Open science practices are broadly applicable within the field of aging research. …
Open science practices are broadly applicable within the field of aging research. Across study types, these practices carry the potential to influence changes within research practices in aging science that can improve the integrity and reproducibility of studies. Resources on open science practices in aging research can, however, be challenging to discover due to the breadth of aging research and the range of resources available on the subject. By accumulating resources on open science and aging research and compiling them in a centralized location, we hope to facilitate the discoverability and use of these resources among researchers who study aging, and among any other interested parties. Unfortunately, not all resources are openly available. The following list of resources, while not open access, provide valuable perspectives, information, and insight into the open science movement and its place in aging research.
The analysis of longitudinal observational data can take many forms and requires …
The analysis of longitudinal observational data can take many forms and requires many decisions, with research findings and conclusions often found to differ across independent longitudinal studies addressing the same question. Differences in measurements, sample composition (e.g., age, cohort, country/culture), and statistical models (e.g., change/time function, covariate set, centering, treatment of incomplete data) can affect the replicability of results. The central aim of the Integrative Analysis of Longitudinal Studies of Aging (IALSA) research network (NIH/NIA P01AG043362) is to optimize opportunities for replication and cross-validation across heterogeneous sources of longitudinal data by evaluating comparable conceptual and statistical models at the construct-level. We will provide an overview of the methodological challenges associated with comparative longitudinal and international research, including the comparability of alternative models of change, measurement harmonization and construct-level comparison, retest effects, distinguishing and contrasting between-person and within-person effects across studies, and evaluation of alternative models for change over time. These methodological challenges and recommended approaches will be discussed within the context of reproducible and replication research focused on longitudinal studies.
No restrictions on your remixing, redistributing, or making derivative works. Give credit to the author, as required.
Your remixing, redistributing, or making derivatives works comes with some restrictions, including how it is shared.
Your redistributing comes with some restrictions. Do not remix or make derivative works.
Most restrictive license type. Prohibits most uses, sharing, and any changes.
Copyrighted materials, available under Fair Use and the TEACH Act for US-based educators, or other custom arrangements. Go to the resource provider to see their individual restrictions.