Updating search results...

Search Resources

28 Results

View
Selected filters:
  • atp
ATP: The Fuel of Life
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

The goal of this lesson is to introduce students who are interested in human biology and biochemistry to the subtleties of energy metabolism (typically not presented in standard biology and biochemistry textbooks) through the lens of ATP as the primary energy currency of the cell. Avoiding the details of the major pathways of energy production (such as glycolysis, the citric acid cycle, and oxidative phosphorylation), this lesson is focused exclusively on ATP, which is truly the fuel of life. Starting with the discovery and history of ATP, this lesson will walk the students through 8 segments (outlined below) interspersed by 7 in-class challenge questions and activities, to the final step of ATP production by the ATP synthase, an amazing molecular machine. A basic understanding of the components and subcellular organization (e.g. organelles, membranes, etc.) and chemical foundation (e.g. biomolecules, chemical equilibrium, biochemical energetics, etc.) of a eukaryotic cell is a desired prerequisite, but it is not a must. Through interactive in-class activities, this lesson is designed to spark the students’ interest in biochemistry and human biology as a whole, but could serve as an introductory lesson to teaching advanced concepts of metabolism and bioenergetics in high school depending on the local science curriculum. No supplies or materials are needed.

Subject:
Biology
Life Science
Material Type:
Lecture
Provider:
MIT
Provider Set:
MIT Blossoms
Author:
Christian Schubert
Date Added:
02/13/2015
ATP synthase
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

ATP synthase and its role in mitochondria during respiration and chloroplasts during photosynthesis.

Subject:
Biology
Life Science
Material Type:
Lesson
Provider:
Khan Academy
Provider Set:
Khan Academy
Author:
Sal Khan
Date Added:
10/23/2018
Biology
Unrestricted Use
CC BY
Rating
0.0 stars

Biology is designed for multi-semester biology courses for science majors. It is grounded on an evolutionary basis and includes exciting features that highlight careers in the biological sciences and everyday applications of the concepts at hand. To meet the needs of today’s instructors and students, some content has been strategically condensed while maintaining the overall scope and coverage of traditional texts for this course. Instructors can customize the book, adapting it to the approach that works best in their classroom. Biology also includes an innovative art program that incorporates critical thinking and clicker questions to help students understand—and apply—key concepts.

Subject:
Biology
Life Science
Material Type:
Full Course
Provider:
Rice University
Provider Set:
OpenStax College
Date Added:
08/22/2012
Biology, The Cell, Cellular Respiration, Energy in Living Systems
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

By the end of this section, you will be able to:Discuss the importance of electrons in the transfer of energy in living systemsExplain how ATP is used by the cell as an energy source

Subject:
Applied Science
Biology
Life Science
Material Type:
Module
Author:
Tina B. Jones
Date Added:
08/16/2019
Biology, The Cell, Photosynthesis, The Light-Dependent Reactions of Photosynthesis
Conditional Remix & Share Permitted
CC BY-NC
Rating
0.0 stars

By the end of this section, you will be able to:Explain how plants absorb energy from sunlightDescribe short and long wavelengths of lightDescribe how and where photosynthesis takes place within a plant

Subject:
Applied Science
Biology
Life Science
Material Type:
Module
Date Added:
07/10/2017
Biology, The Cell, Photosynthesis, The Light-Dependent Reactions of Photosynthesis
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

By the end of this section, you will be able to:Explain how plants absorb energy from sunlightDescribe short and long wavelengths of lightDescribe how and where photosynthesis takes place within a plant

Subject:
Applied Science
Biology
Life Science
Material Type:
Module
Author:
Tina B. Jones
Date Added:
08/16/2019
Chemical Reactions in Biology: Crash Course Biology #26
Read the Fine Print
Some Rights Reserved
Rating
0.0 stars

Cells need energy to power the chemical reactions that keep their microscopic cities running, and most of that energy comes from a chemical called ATP. In this episode of Crash Course Biology, we’ll learn how our cells use energy, what an enzyme’s role is in chemical reactions, and what makes a reaction exergonic or endergonic.

Chapters:
Cellular Cities
What Is Energy?
The Laws of Thermodynamics
ATP
Chemical Reactions
Enzymes
Metabolic Pathways
Review & Credits
Credits

Subject:
Biology
Life Science
Material Type:
Lecture
Provider:
Complexly
Provider Set:
Crash Course Biology
Date Added:
01/29/2024
Fundamentals of Biology
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

Fundamentals of Biology focuses on the basic principles of biochemistry, molecular biology, genetics, and recombinant DNA. These principles are necessary to understanding the basic mechanisms of life and anchor the biological knowledge that is required to understand many of the challenges in everyday life, from human health and disease to loss of biodiversity and environmental quality.
Course Format

This course has been designed for independent study. It consists of four units, one for each topic. The units can be used individually or in combination. The materials for each unit include:

Lecture Videos by MIT faculty.
Learning activities, including Interactive Concept Quizzes, designed to reinforce main concepts from lectures.
Problem Sets you do on your own and check your answers against the Solutions when you’re done.
Problem Solving Video help sessions taught by experienced MIT Teaching Assistants.
Lists of important Terms and Definitions.
Suggested Topics and Links for further study.
Exams with Solution Keys.

Content Development

Eric Lander
Robert Weinberg
Tyler Jacks
Hazel Sive
Graham Walker
Sallie Chisholm
Dr. Michelle Mischke

Subject:
Biology
Life Science
Material Type:
Full Course
Provider:
MIT
Provider Set:
MIT OpenCourseWare
Author:
Chisholm, Sallie
Jacks, Tyler
Lander, Eric
Mischke, Michelle
Sive, Hazel
Walker, Graham
Weinberg, Robert
Date Added:
09/01/2011
Fundamentals of Biology
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

Fundamentals of Biology focuses on the basic principles of biochemistry, molecular biology, genetics, and recombinant DNA. These principles are necessary to understanding the basic mechanisms of life and anchor the biological knowledge that is required to understand many of the challenges in everyday life, from human health and disease to loss of biodiversity and environmental quality.
Course Format

This course has been designed for independent study. It consists of four units, one for each topic. The units can be used individually or in combination. The materials for each unit include:

Lecture Videos by MIT faculty.
Learning activities, including Interactive Concept Quizzes, designed to reinforce main concepts from lectures.
Problem Sets you do on your own and check your answers against the Solutions when you’re done.
Problem Solving Video help sessions taught by experienced MIT Teaching Assistants.
Lists of important Terms and Definitions.
Suggested Topics and Links for further study.
Exams with Solution Keys.

Content Development

Eric Lander
Robert Weinberg
Tyler Jacks
Hazel Sive
Graham Walker
Sallie Chisholm
Dr. Michelle Mischke

Subject:
Biology
Life Science
Physical Science
Material Type:
Full Course
Provider:
MIT
Provider Set:
MIT OpenCourseWare
Author:
Chisholm, Sallie
Jacks, Tyler
Lander, Eric
Mischke, Michelle
Sive, Hazel
Walker, Graham
Weinberg, Robert
Date Added:
09/01/2011
How chloroplasts keep plants running efficiently
Unrestricted Use
CC BY
Rating
0.0 stars

This resource is a video abstract of a research paper created by Research Square on behalf of its authors. It provides a synopsis that's easy to understand, and can be used to introduce the topics it covers to students, researchers, and the general public. The video's transcript is also provided in full, with a portion provided below for preview:

"Chloroplasts harness sunlight to power all the processes that help plants grow. Like engines, they must carefully balance their fuel to run efficiently. In plants, that’s the ratio of ATP to NADPH, two forms of fuel produced by photosynthesis. But scientists have long known that ATP/NADPH ratios in chloroplasts fall short of the value required for plants to turn CO₂ into sugars. To find out how plants overcome this imbalance, researchers tracked ATP in Arabidopsis plants in real time using a fluorescent protein sensor. They found that immature chloroplasts in young seedlings imported cytosolic ATP for chloroplast biogenesis, using an abundance of ATP transporter proteins to do the job, but mature chloroplasts downregulated these transporters to minimize ATP importation. Instead of importing ATP to maintain fuel balance, chloroplasts exported NADPH in the form of malate..."

The rest of the transcript, along with a link to the research itself, is available on the resource itself.

Subject:
Biology
Botany
Genetics
Life Science
Material Type:
Diagram/Illustration
Reading
Provider:
Research Square
Provider Set:
Video Bytes
Date Added:
05/18/2022
In Da Club - Membranes & Transport: Crash Course Biology #5
Read the Fine Print
Some Rights Reserved
Rating
0.0 stars

Hank describes how cells regulate their contents and communicate with one another via mechanisms within the cell membrane.

Chapters:
1) Passive Transport
2) Diffusion
3) Osmosis
4) Channel Proteins
5) Active Transport
6) ATP
7) Transport Proteins
8) Biolography
9) Vesicular Transport
10) Exocytosis
11) Endocytosis
12) Phagocytosis
13) Pinocytosis
14) Receptor-Mediated Endocytosis

Subject:
Biology
Life Science
Material Type:
Lecture
Provider:
Complexly
Provider Set:
Crash Course Biology (2012)
Date Added:
02/27/2012