Updating search results...

Search Resources

18 Results

View
Selected filters:
  • confidence-intervals
Economics Simulations
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This website is an interactive educational application developed to simulate and visualize various statistical concepts:

Law of Large Numbers
Central Limit Theorem
Confidence Intervals
Hypothesis Testing
ANOVA
Joint Distributions
Least Squares
Sample Distribution of OLS Estimators
The OLS Estimators are Consistent
Omitted Variable Bias
Multiple Regression

Project of Professor Tanya Byker and Professor Amanda Gregg at Middlebury College, with research assistants Kevin Serrao, Class of 2018, Dylan Mortimer, Class of 2019, Ammar Almahdy, Class of 2020, Jacqueline Palacios, Class of 2020, Siyuan Niu, Class of 2021, David Gikoshvili, Class of 2021, and Ethan Saxenian, Class of 2022.

Subject:
Economics
Social Science
Material Type:
Simulation
Author:
Amanda Gregg
Tanya Byker
Date Added:
01/27/2022
Elementary Statistics (GHC) (Open Course)
Unrestricted Use
CC BY
Rating
0.0 stars

This open course for Elementary Statistics was created through a Round Ten Textbook Transformation Grant:

https://oer.galileo.usg.edu/mathematics-collections/39/

The open course contains ancillary materials for OpenStax Introductory Statistics:

https://openstax.org/details/books/introductory-statistics

Included in the course are introductions to each lesson, lecture slides, videos, and problem questions. Topics include:

Types of Data
Sampling Techniques
Qualitative Data
Frequency Distributions
Descriptive Statistics
Variation and Position
Confidence Intervals
Hypothesis Testing
Chi-Square Goodness of Fit
Linear Regression
Variance ANOVA

Subject:
Mathematics
Statistics and Probability
Material Type:
Full Course
Provider:
Georgia Highlands College
Author:
Brent Griffin
Camille Pace
Elizabeth Clark
Kamisha DeCoudreaux
Katie Bridges
Laura Ralston
Vincent Manatsa
Zac Johnston
Date Added:
10/03/2022
The Extent and Consequences of P-Hacking in Science
Unrestricted Use
CC BY
Rating
0.0 stars

A focus on novel, confirmatory, and statistically significant results leads to substantial bias in the scientific literature. One type of bias, known as “p-hacking,” occurs when researchers collect or select data or statistical analyses until nonsignificant results become significant. Here, we use text-mining to demonstrate that p-hacking is widespread throughout science. We then illustrate how one can test for p-hacking when performing a meta-analysis and show that, while p-hacking is probably common, its effect seems to be weak relative to the real effect sizes being measured. This result suggests that p-hacking probably does not drastically alter scientific consensuses drawn from meta-analyses.

Subject:
Biology
Life Science
Material Type:
Reading
Provider:
PLOS Biology
Author:
Andrew T. Kahn
Luke Holman
Megan L. Head
Michael D. Jennions
Rob Lanfear
Date Added:
08/07/2020
Fundamental Statistics
Unrestricted Use
CC BY
Rating
0.0 stars

Introductory Statistics Course covering hypothesis testing, confidence interval, sampling, probability, counting techniques, correlation, linear regression, data collection and more.

Subject:
Mathematics
Statistics and Probability
Material Type:
Full Course
Provider:
Bristol Community College
Author:
Dan Avedikian
Date Added:
05/01/2019
Hypothesis testing (12:35)
Only Sharing Permitted
CC BY-NC-ND
Rating
0.0 stars

An introduction and examples of how to use statistical hypothesis testing, introducing the five steps in the significance test: 1. Assumptions 2. Hypothesis and signifincance level 3. Test Statistic 4. P-value 5. Conclusion

Subject:
Applied Science
Health, Medicine and Nursing
Mathematics
Statistics and Probability
Material Type:
Lecture
Provider:
Umeå University
Provider Set:
Quantitative Research Methods
Author:
Associate professor in epidemiology and biostatistics
Marie Lindqvist
Date Added:
11/01/2014
Mathematical Statistics
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This course provides students with decision theory, estimation, confidence intervals, and hypothesis testing. It introduces large sample theory, asymptotic efficiency of estimates, exponential families, and sequential analysis.

Subject:
Economics
Mathematics
Social Science
Material Type:
Full Course
Provider Set:
MIT OpenCourseWare
Author:
Kempthorne, Peter
Date Added:
02/01/2016
Statistical Thinking for the 21st Century
Conditional Remix & Share Permitted
CC BY-NC
Rating
0.0 stars

Statistical thinking is a way of understanding a complex world by describing it in relatively simple terms that nonetheless capture essential aspects of its structure, and that also provide us some idea of how uncertain we are about our knowledge. The foundations of statistical thinking come primarily from mathematics and statistics, but also from computer science, psychology, and other fields of study.

Subject:
Mathematics
Statistics and Probability
Material Type:
Textbook
Author:
Russel A. Poldrack
Date Added:
12/03/2019
Statistics: Clarification of Confidence Interval of Difference of Means
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This 3-minute video lesson provides clarification of the previous video on the confidence interval for difference of means. [Statistics playlist: Lesson 57 of 85]

Subject:
Mathematics
Statistics and Probability
Material Type:
Lecture
Provider:
Khan Academy
Provider Set:
Khan Academy
Author:
Salman Khan
Date Added:
08/01/2011
Statistics: Confidence Interval 1
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This 14-minute video lesson shows how to estimate the probability that the true population mean lies within a range around a sample mean .[Statistics playlist: Lesson 40 of 85]

Subject:
Mathematics
Statistics and Probability
Material Type:
Lecture
Provider:
Khan Academy
Provider Set:
Khan Academy
Author:
Salman Khan
Date Added:
08/01/2011
Statistics: Margin of Error 1
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This 15-minute video lesson looks at the margin of error--finding the 95% confidence interval for the proportion of a population voting for a candidate .[Statistics playlist: Lesson 43 of 85]

Subject:
Mathematics
Statistics and Probability
Material Type:
Lecture
Provider:
Khan Academy
Provider Set:
Khan Academy
Author:
Salman Khan
Date Added:
02/20/2011
Statistics: Margin of Error 2
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This 10-minute video lesson continues the discussion of margin of error--finding the 95% confidence interval for the proportion of a population voting for a candidate. [Statistics playlist: Lesson 44 of 85]

Subject:
Mathematics
Statistics and Probability
Material Type:
Lecture
Provider:
Khan Academy
Provider Set:
Khan Academy
Author:
Salman Khan
Date Added:
02/20/2011
Statistics: T-Statistic Confidence Interval
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This 12-minute video lesson looks at the T-Statistic Confidence Interval (for small sample sizes). [Statistics playlist: Lesson 52 of 85]

Subject:
Mathematics
Statistics and Probability
Material Type:
Lecture
Provider:
Khan Academy
Provider Set:
Khan Academy
Author:
Salman Khan
Date Added:
02/20/2011
Statistics for Applications
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This course offers a broad treatment of statistics, concentrating on specific statistical techniques used in science and industry. Topics include: hypothesis testing and estimation, confidence intervals, chi-square tests, nonparametric statistics, analysis of variance, regression, and correlation.
OCW offers an earlier version of this course, from Fall 2003. This newer version focuses less on estimation theory and more on multiple linear regression models. In addition, a number of Matlab examples are included here.

Subject:
Mathematics
Material Type:
Full Course
Provider Set:
MIT OpenCourseWare
Author:
Panchenko, Dmitry
Date Added:
09/01/2006
Statistics for Applications
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This course is a broad treatment of statistics, concentrating on specific statistical techniques used in science and industry. Topics include: hypothesis testing and estimation, confidence intervals, chi-square tests, nonparametric statistics, analysis of variance, regression, correlation, decision theory, and Bayesian statistics.

Subject:
Mathematics
Material Type:
Full Course
Provider Set:
MIT OpenCourseWare
Author:
Kempthorne, Peter
Date Added:
02/01/2015
Statistics for Brain and Cognitive Science
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

Provides students with the basic tools for analyzing experimental data, properly interpreting statistical reports in the literature, and reasoning under uncertain situations. Topics organized around three key theories: Probability, statistical, and the linear model. Probability theory covers axioms of probability, discrete and continuous probability models, law of large numbers, and the Central Limit Theorem. Statistical theory covers estimation, likelihood theory, Bayesian methods, bootstrap and other Monte Carlo methods, as well as hypothesis testing, confidence intervals, elementary design of experiments principles and goodness-of-fit. The linear model theory covers the simple regression model and the analysis of variance. Places equal emphasis on theory, data analyses, and simulation studies.

Subject:
Life Science
Mathematics
Material Type:
Full Course
Provider Set:
MIT OpenCourseWare
Author:
Brown, Emery
Date Added:
09/01/2016