Updating search results...

# 16 Results

View
Selected filters:
• conversion
Educational Use
Rating
0.0 stars

Students learn how to build simple piezoelectric generators to power LEDs. To do this, they incorporate into a circuit a piezoelectric element that converts movements they make (mechanical energy) into electrical energy, which is stored in a capacitor (short-term battery). Once enough energy is stored, they flip a switch to light up an LED. Students also learn how much (surprisingly little) energy can be converted using the current state of technology for piezoelectric materials.

Subject:
Applied Science
Career and Technical Education
Electronic Technology
Engineering
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Kimberly Anderson
Matthew Zelisko
10/14/2015
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This lesson shows how to write a fraction as a decimal number.

Subject:
Mathematics
Material Type:
Lecture
Provider:
Provider Set:
Author:
Salman Khan
07/18/2011
Educational Use
Rating
0.0 stars

Students learn about and practice converting between fractions, decimals and percentages. Using a LEGO® MINDSTORMS® NXT robot and a touch sensor, each group inputs a fraction of its choosing. Team members convert this same fraction into a decimal, and then a percentage via hand calculations, and double check their work using the NXT robot. Then they observe the robot moving forward and record that distance. Students learn that the distance moved is a fraction of the full distance, based on the fraction that they input, so if they input ½, the robot moves half of the original distance. From this, students work backwards to compute the full distance. Groups then compete in a game in which they are challenged to move the robot as close as possible to a target distance by inputting a fraction into the NXT bot.

Subject:
Applied Science
Engineering
Mathematics
Technology
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Javed Narain
09/18/2014
Educational Use
Rating
0.0 stars

The students participate in many demonstrations during the first day of this lesson to learn basic concepts related to the forms and states of energy. This knowledge is then applied the second day as they assess various everyday objects to determine what forms of energy are transformed to accomplish the object's intended task. The students use block diagrams to illustrate the form and state of energy flowing into and out of the process.

Subject:
Applied Science
Chemistry
Engineering
Physical Science
Physics
Technology
Material Type:
Activity/Lab
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Jan DeWaters
Susan Powers
09/18/2014
Educational Use
Rating
0.0 stars

Students use a recipe to prepare a hydrogel gummy snack, which has a similar consistency to that found in a Haribo® gummy product. They must convert the juice and gelatin-based recipe from US customary units to metric units with dimensional analysis conversion. After unit conversion, teams are given different gelatin quantities and design their gummy snacks. Once the candies have solidified, student groups compare the gummy snacks are for viscosity and taste. After a taste test, teams reflect on their experiment and brainstorm ways to iterate a better gummy recipe.

Subject:
Chemistry
Mathematics
Measurement and Data
Numbers and Operations
Physical Science
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
Activities
Author:
Jodie Polan
05/30/2019
Educational Use
Rating
0.0 stars

Students learn about kinetic and potential energy, including various types of potential energy: chemical, gravitational, elastic and thermal energy. They identify everyday examples of these energy types, as well as the mechanism of corresponding energy transfers. They learn that energy can be neither created nor destroyed and that relationships exist between a moving object's mass and velocity. Further, the concept that energy can be neither created nor destroyed is reinforced, as students see the pervasiveness of energy transfer among its many different forms. A PowerPoint(TM) presentation and post-quiz are provided.

Subject:
Applied Science
Engineering
Physical Science
Physics
Material Type:
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Eric Anderson
Irene Zhao
Jeff Kessler
10/14/2015
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

Fundamentals of Ammonia Synthesis is a meticulously designed resource that was written to provide both students and educators with an amazing learning experience.The topic is structured into five captivating lessons, each carefully designed to understand the complexity of ammonia production. Beginning with the first lesson where we studied the process steps involved in ammonia synthesis, to lesson two where we explored the concept of Synthesis gas production by steam reforming with emphasis on natural gas reforming. In lesson three we analyzed the various operating variables that influence the production of synthesis. In lessons four and five we studied the purification of synthesis and how it is used for the production of ammonia. Each lesson comes with a quiz to reinforce what was learned.Our resource doesn't just serve as class notes; it's a gateway to a deeper understanding of chemical engineering principles. Whether you're a student seeking to grasp the fundamentals or an educator looking to enrich your teaching arsenal, "Fundamentals of Ammonia Synthesis" promises an enriching educational journey filled with insight, discovery, and practical application. Join us as we unlock the secrets of ammonia synthesis and pave the way for a brighter future in chemical engineering.

Subject:
Applied Science
Engineering
Material Type:
Unit of Study
Author:
Lotachukwu Ernest Eze
03/13/2024
Unrestricted Use
CC BY
Rating
0.0 stars

Throughout history, humans relied on their own muscles and later utilized draft animals and machines to perform physical tasks. The transformative impact of waterwheels, windmills, and the steam engine marked significant milestones in human energy history. Now, the transition to clean energy is crucial to mitigate the environmental impact and shape a sustainable future.

Subject:
Applied Science
Career and Technical Education
Engineering
Environmental Studies
Material Type:
Case Study
Diagram/Illustration
Provider:
Boston University
Provider Set:
Boston University Institute for Global Sustainability
06/12/2023
Conditional Remix & Share Permitted
CC BY-NC
Rating
0.0 stars

Fractions and Decimals

Type of Unit: Concept

Prior Knowledge

Students should be able to:

Multiply and divide whole numbers and decimals.
Multiply a fraction by a whole number.
Multiply a fraction by another fraction.
Write fractions in equivalent forms, including converting between improper fractions and mixed numbers.
Understand the meaning and structure of decimal numbers.

Lesson Flow

This unit extends students’ learning from Grade 5 about operations with fractions and decimals.

The first lesson informally introduces the idea of dividing a fraction by a fraction. Students are challenged to figure out how many times a 14-cup measuring cup must be filled to measure the ingredients in a recipe. Students use a variety of methods, including adding 14 repeatedly until the sum is the desired amount, and drawing a model. In Lesson 2, students focus on dividing a fraction by a whole number. They make a model of the fraction—an area model, bar model, number line, or some other model—and then divide the model into whole numbers of groups. Students also work without a model by looking at the inverse relationship between division and multiplication. Students explore methods for dividing a whole number by a fraction in Lesson 3, for dividing a fraction by a unit fraction in Lesson 4, and for dividing a fraction by another fraction in Lesson 6. Students examine several methods and models for solving such problems, and use models to solve similar problems.

Students apply their learning to real-world contexts in Lesson 6 as they solve word problems that require dividing and multiplying mixed numbers. Lesson 7 is a Gallery lesson in which students choose from a number of problems that reinforce their learning from the previous lessons.

Students review the standard long-division algorithm for dividing whole numbers in Lesson 8. They discuss the different ways that an answer to a whole number division problem can be expressed (as a whole number plus a remainder, as a mixed number, or as a decimal). Students then solve a series of real-world problems that require the same whole number division operation, but have different answers because of how the remainder is interpreted.

Students focus on decimal operations in Lessons 9 and 10. In Lesson 9, they review addition, subtraction, multiplication, and division with decimals. They solve decimal problems using mental math, and then work on a card sort activity in which they must match problems with diagram and solution cards. In Lesson 10, students review the algorithms for the four basic decimal operations, and use estimation or other methods to place the decimal points in products and quotients. They solve multistep word problems involving decimal operations.

In Lesson 11, students explore whether multiplication always results in a greater number and whether division always results in a smaller number. They work on a Self Check problem in which they apply what they have learned to a real-world problem. Students consolidate their learning in Lesson 12 by critiquing and improving their work on the Self Check problem from the previous lesson. The unit ends with a second set of Gallery problems that students complete over two lessons.

Subject:
Mathematics
Ratios and Proportions
Material Type:
Unit of Study
Provider:
Pearson
Educational Use
Rating
0.0 stars

Students learn about a fascinating electromechanical coupling called piezoelectricity that is being employed and researched around the world for varied purposes, often for creative energy harvesting methods. A PowerPoint(TM) presentation provides an explanation of piezoelectric materials at the atomic scale, and how this phenomenon converts mechanical energy to electrical energy. A range of applications, both tested and conceptual, are presented to engage students in the topic. Gaining this background understanding prepares students to conduct the associated hands-on activity in which they create their own small piezoelectric "generators."

Subject:
Applied Science
Career and Technical Education
Electronic Technology
Engineering
Material Type:
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Kimberly Anderson
Matthew Zelisko
10/14/2015
Conditional Remix & Share Permitted
CC BY-NC
Rating
0.0 stars

Students will use the Design Process to build and test multiple wind turbine designs in order to generate electricity.

Subject:
Applied Science
Career and Technical Education
Education
Educational Technology
Engineering
English Language Arts
Environmental Science
Environmental Studies
Mathematics
Measurement and Data
Speaking and Listening
Material Type:
Activity/Lab
06/14/2021
Conditional Remix & Share Permitted
CC BY-NC
Rating
0.0 stars

Students will use the Design Process to build and test multiple wind turbine designs in order to generate electricity.

Subject:
Applied Science
Career and Technical Education
Education
Educational Technology
Engineering
English Language Arts
Environmental Science
Environmental Studies
Mathematics
Measurement and Data
Speaking and Listening
Material Type:
Activity/Lab
12/05/2018
Unrestricted Use
CC BY
Rating
0.0 stars

Worksheet with worked-out problems on unit conversation, from Barbara Gilbert at CNM.

Subject:
Mathematics
Physical Science
Material Type:
Homework/Assignment
08/24/2016
Educational Use
Rating
0.0 stars

Students are introduced to the nano-size length scale as they make measurements and calculate unit conversions. They measure common objects and convert their units to nanometers, giving them a simple reference frame for understanding the very small size of nanometers. Then, they compare provided length data from objects too small to measure, such as a human hair and a flea, giving them a comparative insight to the nanotechnology scale. Using familiar and common objects for comparison helps students understand more complex scientific concepts.

Subject:
Applied Science
Engineering
Mathematics
Technology
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Marc Bird
09/18/2014
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

In this activity, learners use basic measurements of the Earth and pieces of rock and iron to estimate the mass of the Earth. Learners will calculate mass, volume, and density, convert units, and employ the water displacement method. To calculate an even more accurate estimate of the mass of the Earth, this resource includes optional instructions on how to measure the iron core mass.

Subject:
Physical Science
Physics
Material Type:
Activity/Lab
Provider:
Exploratorium
Author:
Eric Muller
The Exploratorium