Updating search results...

Search Resources

19 Results

View
Selected filters:
  • dna-replication
Activities for engaging students in Biology using animations
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This resource includes three classroom-tested activities that were created using the ideas outlined in the article “Getting more out of animations” by Pruneski and Donovan (in press). The driving idea is that animations can be a powerful tool for learning complex biological processes, but when students are passive viewers, it limits their usefulness and may become simply another source of content to be memorized. Engaging students with animations can greatly increase the amount of information that can be extracted and can help students develop important learning skills that can be useful in the future.

These sample assignments help make the use of animations more effective and active by structuring student viewing using guiding questions. These questions focus on particular objects, features, or steps of the process to help students accomplish specific learning objectives for that topic. The assignments also help students think about animations as media objects that are created by scientists and animators using specific tools and conventions that affect how the process is depicted and the ways in which it should be viewed. Lastly, by comparing and contrasting multiple animations of the same process, students can extract more information, overcome the limitations of each individual animations, and generate a more complete view of the process.

Subject:
Life Science
Material Type:
Activity/Lab
Homework/Assignment
Date Added:
06/18/2016
Biology
Unrestricted Use
CC BY
Rating
0.0 stars

Biology is designed for multi-semester biology courses for science majors. It is grounded on an evolutionary basis and includes exciting features that highlight careers in the biological sciences and everyday applications of the concepts at hand. To meet the needs of today’s instructors and students, some content has been strategically condensed while maintaining the overall scope and coverage of traditional texts for this course. Instructors can customize the book, adapting it to the approach that works best in their classroom. Biology also includes an innovative art program that incorporates critical thinking and clicker questions to help students understand—and apply—key concepts.

Subject:
Biology
Life Science
Material Type:
Full Course
Provider:
Rice University
Provider Set:
OpenStax College
Date Added:
08/22/2012
Cell Biology: Structure and Functions of the Nucleus
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

The goal of this course is to teach both the fundamentals of nuclear cell biology as well as the methodological and experimental approaches upon which they are based. Lectures and class discussions will cover the background and fundamental findings in a particular area of nuclear cell biology. The assigned readings will provide concrete examples of the experimental approaches and logic used to establish these findings. Some examples of topics include genome and systems biology, transcription, and gene expression.

Subject:
Biology
Life Science
Physical Science
Material Type:
Full Course
Provider:
MIT
Provider Set:
MIT OpenCourseWare
Author:
Sharp, Phillip
Young, Richard
Date Added:
02/01/2010
DNA Replication
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

Many biotechnology applications rely on the DNA replication process.  Through this lesson, students will better understand the DNA replication process and connect it to other biotechnology processes.

Subject:
Agriculture
Biology
Material Type:
Activity/Lab
Lesson
Author:
Abby Hitchler
Date Added:
07/07/2023
DNA replication concept map
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This activity contains a concept map on DNA replication and repair. These topics are challenging for most undergraduates; thus, this exercise is designed them to give them practice at distinguishing between the enzymes and processes involved.

Subject:
Biology
Life Science
Material Type:
Activity/Lab
Date Added:
09/27/2019
Human Anatomy & Physiology, Revised & Condensed Edition
Unrestricted Use
CC BY
Rating
0.0 stars

This text been designed for an undergraduate human anatomy and physiology course at a medium sized public university. This text has been modified from the original OpenStax text to encourage more active reading for an early undergraduate student taking the first semester of a year-long human anatomy and physiology course sequence. This text has been targeted to our student population, consisting primarily of first semester pre-nursing and kinesiology majors at a university with a high proportion of first generation and PELL-eligible students who benefit from lower barriers to entry into the field. Therefore, freely-available and differently presented text can be beneficial to this student population. This version was designed with the intention of distributing it section by section through a learning management system. If this mode of distribution is used, connection to an assessment tool could be utilized. Systems covered include skeletal, muscular, cardiovascular, respiratory, and nervous.

As this text reorganizes and modifies an OpenStax’s Anatomy and Physiology 2e (see related resources link below), chapter numbers and chapter section numbers from the original have been preserved in this document. Material supplemented from other sources is cited within the text.

Course connections: Undergraduate courses aimed towards freshmen or sophomore, including Anatomy and Physiology, Introduction to Anatomy and Physiology, Physiology, Introduction to Physiology, Human Biology or similar with a human focus.

Subject:
Anatomy/Physiology
Biology
Life Science
Material Type:
Textbook
Author:
Megan Sherbenou
Date Added:
06/27/2024
New research brings causes of progeria into closer focus
Unrestricted Use
CC BY
Rating
0.0 stars

This resource is a video abstract of a research paper created by Research Square on behalf of its authors. It provides a synopsis that's easy to understand, and can be used to introduce the topics it covers to students, researchers, and the general public. The video's transcript is also provided in full, with a portion provided below for preview:

"St. Louis University researchers have discovered some of the molecular processes that lead to decline in patients with progeria. Their work also helps explain why certain drugs seemingly rejuvenate progeria cells, which could hint at more potent therapies against progeria. Hutchinson–Gilford progeria syndrome is a rare genetic disease that causes premature aging. Rapid aging of different tissues causes death by teenage years, normally due to cardiovascular complications. Currently, therapies for this devastating disease provide patients minimal benefit. The origin of progeria is a mutation in the lamin A gene—responsible for fabricating structural proteins that help keep the cell nucleus sturdy and the genome intact. The mutated lamin A protein “progerin” destabilizes the cell nucleus, causes DNA damage, and ultimately leads to the aging effects found in patients with progeria. Now, the researchers have delved deeper to understand how progerin wreaks damage at the molecular level..."

The rest of the transcript, along with a link to the research itself, is available on the resource itself.

Subject:
Genetics
Life Science
Material Type:
Diagram/Illustration
Reading
Provider:
Research Square
Provider Set:
Video Bytes
Date Added:
09/20/2019