Updating search results...

Search Resources

35 Results

View
Selected filters:
  • gps
Pervasive Human Centric Computing (SMA 5508)
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This course is broad, covering a wide range of topics that have to do with the post-pc era of computing. It is a hands-on project course that also includes some foundational subjects. Students will program iPAQ handheld computers, cell phones (series 60 phones), speech processing, vision, Cricket location systems, GPS, and more. Most of the programming will be using Python®, but Python® can be learned and mastered during the course.
This course was also taught as part of the Singapore-MIT Alliance (SMA) programme as course number SMA 5508 (Pervasive Computing).

Subject:
Applied Science
Computer Science
Engineering
Material Type:
Full Course
Provider:
MIT
Provider Set:
MIT OpenCourseWare
Author:
Rudolph, Larry
Date Added:
02/01/2006
Plot Your Course - Navigation
Read the Fine Print
Educational Use
Rating
0.0 stars

In this unit, students learn the very basics of navigation, including the different kinds of navigation and their purposes. The concepts of relative and absolute location, latitude, longitude and cardinal directions are explored, as well as the use and principles of maps and a compass. Students discover the history of navigation and learn the importance of math and how it ties into navigational techniques. Understanding how trilateration can determine one's location leads to a lesson on the global positioning system and how to use a GPS receiver. The unit concludes with an overview of orbits and spacecraft trajectories from Earth to other planets.

Subject:
Applied Science
Engineering
Physical Geography
Physical Science
Material Type:
Full Course
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Date Added:
10/14/2015
Projections and Coordinates: Turning a 3D Earth into Flatlands
Read the Fine Print
Educational Use
Rating
0.0 stars

Projections and coordinates are key advancements in the geographic sciences that allow us to better understand the nature of the Earth and how to describe location. These innovations in describing the Earth are the basis for everything that is done in a GIS framework. Shape of the Earth is a critical starting point because in fact the Earth is not round but rather a more complex shape called a geoid. Coordinate systems are often referenced to a particular model shape of the Earth, but many different formats exist because not all coordinates work equally well in all areas. While projections and coordinates are abstract concepts in themselves, students eventually find them interesting because 1) it causes them to challenge their current ideas of the Earth's shape and 2) it is much easier to visualize these ideas for learning through interactive GIS such as Google Earth.

Subject:
Applied Science
Engineering
Geoscience
Physical Science
Space Science
Technology
Material Type:
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Andrey Koptelov
Nathan Howell
Date Added:
09/18/2014
Rockets
Read the Fine Print
Educational Use
Rating
0.0 stars

Students learn how and why engineers design satellites to benefit life on Earth, as well as explore motion, rockets and rocket motion. Through six lessons and 10 associated hands-on activities, students discover that the motion of all objects everything from the flight of a rocket to the movement of a canoe is governed by Newton's three laws of motion. This unit introduces students to the challenges of getting into space for the purpose of exploration. The ideas of thrust, weight and control are explored, helping students to fully understand what goes into the design of rockets and the value of understanding these scientific concepts. After learning how and why the experts make specific engineering choices, students also learn about the iterative engineering design process as they design and construct their own model rockets. Then students explore triangulation, a concept that is fundamental to the navigation of satellites and global positioning systems designed by engineers; by investigating these technologies, they learn how people can determine their positions and the locations of others.

Subject:
Applied Science
Astronomy
Engineering
Physical Science
Material Type:
Full Course
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Date Added:
10/14/2015
Satellite Engineering
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

Satellite Engineering introduces students to subsystem design in engineering spacecraft. The course presents characteristic subsystems, such as power, structure, communication and control, and analyzes the engineering trades necessary to integrate subsystems successfully into a satellite. Discussions of spacecraft operating environment and orbital mechanics help students to understand the functional requirements and key design parameters for satellite systems.

Subject:
Applied Science
Astronomy
Engineering
Physical Science
Material Type:
Full Course
Provider:
MIT
Provider Set:
MIT OpenCourseWare
Author:
Keesee, John
Miller, David
Date Added:
09/01/2003
Satellite Navigation
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

Global Satellite Navigation Systems (GNSS), such as GPS, have revolutionized positioning and navigation. Currently, four such systems are operational or under development. They are the American GPS, the Russian Glonass, the European Galileo, and the Chinese Beidou-Compass. This course will address: (1) the technical principles of Global Navigation Satellite Systems (GNSS), (2) the methods to improve the accuracy of standard positioning services down to the millimeter accuracy level and the integrity of the systems, and (3) the various applications for positioning, navigation, geomatics, earth sciences, atmospheric research and space missions. The course will first address the space segment, user and control segment, signal structure, satellite and receiver clocks, timing, computation of satellite positions, broadcast and precise ephemeris. It will also cover propagation error sources such as atmospheric effects and multipath. The second part of the course covers autonomous positioning for car navigation, aviation, and location based services (LBS). This part includes the integrity of GNSS systems provided for instance by Space Based Augmentation Systems (e.g. WAAS, EGNOS) and Receiver Autonomous Integrity Monitoring (RAIM). It will also cover parameter estimation in dynamic systems: recursive least-squares estimation, Kalman filter (time update, measurement update), innovation, linearization and Extended Kalman filter. The third part of the course covers precise relative GPS positioning with two or more receivers, static and kinematic, for high-precision applications. Permanent GPS networks and the International GNSS Service (IGS) will be discussed as well. In the last part of the course there will be two tracks (students only need to do one): (1) geomatics track: RTK services, LBS, surveying and mapping, civil engineering applications (2) space track: space based GNSS for navigation, control and guidance of space missions, formation flying, attitude determination The final lecture will be on (scientific) applications of GNSS.

Subject:
Astronomy
Physical Science
Material Type:
Assessment
Homework/Assignment
Lecture Notes
Reading
Provider:
Delft University of Technology
Provider Set:
TU Delft OpenCourseWare
Author:
A.A. Verhagen
Date Added:
02/10/2016
Shake Alert!: Making every second count.
Rating
0.0 stars

The high school earth and physical science unit moves through an exploration of tectonic plates, why and how they move, and the earthquakes that they cause. As the final project, teams learn about Early Warning Systems for earthquakes and how they have saved millions of lives in other countries. Teams take on a population in Oregon and design a ShakeAlert system to give them the seconds required to prepare for a mega earthquake.

Subject:
Geology
Physical Science
Material Type:
Activity/Lab
Case Study
Lesson Plan
Reading
Unit of Study
Author:
Holly Lynn
Joe Emery
Lisa Livelybrooks
Date Added:
05/15/2018
State Your Position
Read the Fine Print
Educational Use
Rating
0.0 stars

To navigate, you must know roughly where you stand relative to your designation, so you can head in the right direction. In locations where landmarks are not available to help navigate (in deserts, on seas), objects in the sky are the only reference points. While celestial objects move fairly predictably, and rough longitude is not too difficult to find, it is not a simple matter to determine latitude and precise positions. In this activity, students investigate the uses and advantages of modern GPS for navigation.

Subject:
Education
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Janet Yowell
Jeff White
Malinda Schaefer Zarske
Matt Lippis
Penny Axelrad
Date Added:
10/14/2015
Surveying and Mapping
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This book provides an introduction, at academic level, into the field of surveying and mapping. The book has been compiled based on hand-outs and readers written for the third-year course Surveying and Mapping, in the bachelor program Civil Engineering at Delft University of Technology. This book covers a wide range of measurement techniques, from land surveying, GPS/GNSS and remote sensing to the associated data processing, the underlying coordinate reference systems, as well as the analysis and visualization of the acquired geospatial information.

Subject:
Applied Science
Engineering
Material Type:
Textbook
Provider:
Delft University of Technology
Author:
Christian Tiberius
Freek van Leijen
Hans van der Marel
René Reudink
Date Added:
01/10/2022
Technology in Transportation
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This course provides an introduction to the transportation industry’s major technical challenges and considerations. For upper level undergraduates interested in learning about the transportation field in a broad but quantitative manner. Topics include road vehicle engineering, internal combustion engines, batteries and motors, electric and hybrid powertrains, urban and high speed rail transportation, water vessels, aircraft types and aerodynamics, radar, navigation, GPS, GIS. Students will complete a project on a subject of their choosing.

Subject:
Applied Science
Engineering
Material Type:
Full Course
Provider:
MIT
Provider Set:
MIT OpenCourseWare
Author:
Sarma, Sanjay
Date Added:
02/01/2011
What Is GIS?
Read the Fine Print
Educational Use
Rating
0.0 stars

Geographic information systems (GIS) are important technology that allows rapid study and use of spatial information. GIS have become increasingly prevalent in industry and the consumer/internet world in the last 20 years. Historically, the basis of GIS was in mapping, and so it is important to understand the basis of maps and how to use them as well as why they are different from GIS. In this lesson, students learn the value of maps, how to use maps, and the basic components of a GIS. They are also introduced to numerous GIS applications.

Subject:
Applied Science
Computing and Information
Engineering
Geoscience
Physical Science
Space Science
Technology
Material Type:
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Andrey Koptelov
Nathan Howell
Date Added:
09/18/2014
What's New in Aerospace: Global Positioning System: A Generation of Service to the World
Conditional Remix & Share Permitted
CC BY-NC
Rating
0.0 stars

Maj. Ben Calhoon, Chief of the Positioning, Navigation and Timing Branch within the Space Operations Division of Headquarters Air Force, will discuss the importance of GPS.

Subject:
Physical Science
Material Type:
Lecture
Provider:
National Air and Space Museum
Author:
National Air and Space Museum
Date Added:
01/30/2017
Where Am I: Navigation and Satellites
Read the Fine Print
Educational Use
Rating
0.0 stars

How do we know where we are? What happens if you are completely lost in the middle of nowhere? Does technology provide tools for people lost in their travels? A person cannot usually determine an accurate position just by looking out a window in the middle of the ocean or vast area of land, particularly if it has not been charted before. In this lesson, students explore the concept of triangulation that is used in navigation satellites and global positioning systems designed by engineers. Also, students learn how these technologies can help people determine their position or the location of someone else.

Subject:
Applied Science
Engineering
Geoscience
Physical Science
Space Science
Technology
Material Type:
Activity/Lab
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Janet Yowell
Jay Shah
Malinda Schaefer Zarske
Date Added:
09/18/2014
Where Are the Plastics Near Me? (Field Trip)
Read the Fine Print
Educational Use
Rating
0.0 stars

Through an adult-led field trip, students organized into investigation teams catalogue the incidence of plastic debris in different environments. They investigate these plastics according to their type, age, location and other characteristics that might indicate what potential they have for becoming part of the Great Pacific Garbage Patch (GPGP). Students collect qualitative and quantitative data that may be used to create a Google Earth layer as part of a separate activity that can be completed at a computer lab at school or as homework. The activity is designed as a step on the way to student's creation of their own GIS Google Earth layer. It is, however, possible for the field trip to be a useful learning experience unto itself that does not require this last GIS step.

Subject:
Applied Science
Engineering
Environmental Science
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Andrey Koptelov
Nathan Howell
Date Added:
10/14/2015
Where is Here?
Read the Fine Print
Educational Use
Rating
0.0 stars

In this lesson, students are shown the very basics of navigation. The concepts of relative and absolute location, latitude, longitude and cardinal directions are discussed, as well as the use and principles of a map and compass.

Subject:
Applied Science
Engineering
Physical Geography
Physical Science
Material Type:
Activity/Lab
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Janet Yowell
Jeff White
Malinda Schaefer Zarske
Matt Lippis
Penny Axelrad
Date Added:
09/18/2014