Updating search results...

Search Resources

20 Results

View
Selected filters:
  • heating
Basic HVAC
Unrestricted Use
CC BY
Rating
0.0 stars

This readily accessible online introductory resource was developed for anyone who has interest in, or works with, HVAC controls and equipment. Designed for electrical and HVAC apprentices learning about the subject in school, you will find the descriptive text and original diagrams easy to navigate through, while the question bank will help students review the subject matter covered in each section.

Subject:
Career and Technical Education
Material Type:
Textbook
Provider:
BCcampus
Author:
Aaron Lee
Date Added:
04/15/2021
Basic HVAC
Unrestricted Use
CC BY
Rating
0.0 stars

Short Description:
This readily accessible online introductory resource was developed for anyone who has interest in, or works with, HVAC controls and equipment. Designed for electrical and HVAC apprentices learning about the subject in school, you will find the descriptive text and original diagrams easy to navigate through, while the question bank will help students review the subject matter covered in each section.

Long Description:
This readily accessible online introductory resource was developed for anyone who has interest in, or works with, HVAC controls and equipment. Designed for electrical and HVAC apprentices learning about the subject in school, you will find the descriptive text and original diagrams easy to navigate through, while the question bank will help students review the subject matter covered in each section.

Word Count: 14247

ISBN: 978-1-77420-099-5

(Note: This resource's metadata has been created automatically by reformatting and/or combining the information that the author initially provided as part of a bulk import process.)

Subject:
Career and Technical Education
Material Type:
Textbook
Provider:
BCcampus
Author:
Aaron Lee
Date Added:
04/06/2021
Building Technology Laboratory
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

In this class, concepts of building technology and experimental methods are studied, in class and in lab assignments. Projects vary yearly and have included design and testing of strategies for daylighting, passive heating and cooling, and improved indoor air quality via natural ventilation. Experimental methods focus on measurement and analysis of thermally driven and wind-driven airflows, lighting intensity and glare, and heat flow and thermal storage. Experiments are conducted at model and full scale and are often motivated by ongoing field work in developing countries.

Subject:
Applied Science
Architecture and Design
Career and Technical Education
Engineering
Environmental Science
Environmental Studies
Material Type:
Full Course
Provider Set:
MIT OpenCourseWare
Author:
Norford, Les
Date Added:
02/01/2004
Capturing the Sun's Warmth
Read the Fine Print
Educational Use
Rating
0.0 stars

In the exploration of ways to use solar energy, students investigate the thermal energy storage capacities of different test materials to determine which to use in passive solar building design.

Subject:
Applied Science
Engineering
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Denise Carlson
Jeff Lyng
Malinda Schaefer Zarske
Sabre Duren
Xochitl Zamora-Thompson
Date Added:
10/14/2015
Cooking with the Sun
Read the Fine Print
Educational Use
Rating
0.0 stars

Students learn about using renewable energy from the Sun for heating and cooking as they build and compare the performance of four solar cooker designs. They explore the concepts of insulation, reflection, absorption, conduction and convection.

Subject:
Applied Science
Engineering
Physical Science
Physics
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Denise Carlson
Geoffrey Hill
Jeff Lyng
Jessica Butterfield
Jessica Todd
Malinda Schaefer Zarske
Sabre Duren
Xochitl Zamora-Thompson
Date Added:
10/14/2015
Environmental Technologies in Buildings
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This course focuses on the thermal, luminous, and acoustic behavior of buildings, examining the basic scientific principles underlying these phenomena and introducing students to technologies and analysis techniques for designing comfortable indoor environments. Students are challenged to apply these techniques and explore the role light, energy, and sound can play in shaping architecture.

Subject:
Applied Science
Architecture and Design
Arts and Humanities
Career and Technical Education
Environmental Science
Environmental Studies
Material Type:
Full Course
Provider:
MIT
Provider Set:
MIT OpenCourseWare
Author:
Reinhart, Christoph
Date Added:
09/01/2018
Environmental Technologies in Buildings
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This course focuses on the thermal, luminous, and acoustic behavior of buildings, examining the basic scientific principles underlying these phenomena and introducing students to technologies and analysis techniques for designing comfortable indoor environments. Students are challenged to apply these techniques and explore the role light, energy, and sound can play in shaping architecture.

Subject:
Applied Science
Architecture and Design
Career and Technical Education
Engineering
Environmental Science
Environmental Studies
Material Type:
Full Course
Provider:
MIT
Provider Set:
MIT OpenCourseWare
Author:
Reinhart, Christoph
Date Added:
09/01/2018
Heat Transfer Lesson
Read the Fine Print
Educational Use
Rating
0.0 stars

Students explore heat transfer and energy efficiency using the context of energy efficient houses. They gain a solid understanding of the three types of heat transfer: radiation, convection and conduction, which are explained in detail and related to the real world. They learn about the many ways solar energy is used as a renewable energy source to reduce the emission of greenhouse gasses and operating costs. Students also explore ways in which a device can capitalize on the methods of heat transfer to produce a beneficial result. They are given the tools to calculate the heat transferred between a system and its surroundings.

Subject:
Applied Science
Ecology
Engineering
Forestry and Agriculture
Geoscience
Life Science
Physical Science
Physics
Space Science
Technology
Material Type:
Activity/Lab
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Denise W. Carlson
Landon B. Gennetten
Lauren Cooper
Malinda Schaefer Zarske
Date Added:
09/18/2014
Introduction to Civil and Environmental Engineering Design I
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

In this sophomore design course, you will be challenged with three design tasks: a first concerning water resources/treatment, a second concerning structural design, and a third focusing on the conceptual (re)design of a large system, Boston’s Back Bay. The first two tasks require the design, fabrication and testing of hardware. Several laboratory experiments will be carried out and lectures will be presented to introduce students to the conceptual and experimental basis for design in both domains.
This course was based in large part on the Fall 2005 offering of 1.101, developed by Prof. Harold Hemond.

Subject:
Applied Science
Engineering
Environmental Science
Material Type:
Full Course
Provider:
MIT
Provider Set:
MIT OpenCourseWare
Author:
Bucciarelli, Louis
Einstein, Herbert
Nepf, Heidi
Date Added:
09/01/2006
Introduction to Civil and Environmental Engineering Design I
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

In this sophomore design course, you will be challenged with three design tasks: a first concerning water resources/treatment, a second concerning structural design, and a third focusing on the conceptual (re)design of a large system, Boston’s Back Bay. The first two tasks require the design, fabrication and testing of hardware. Several laboratory experiments will be carried out and lectures will be presented to introduce students to the conceptual and experimental basis for design in both domains.
This course was based in large part on the Fall 2005 offering of 1.101, developed by Prof. Harold Hemond.

Subject:
Applied Science
Engineering
Environmental Science
Material Type:
Full Course
Provider:
MIT
Provider Set:
MIT OpenCourseWare
Author:
Bucciarelli, Louis
Einstein, Herbert
Nepf, Heidi
Date Added:
09/01/2006
Introduction to Civil and Environmental Engineering Design I
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This sophomore-level course is a project-oriented introduction to the principles and practice of engineering design. Design projects and exercises are chosen that relate to the built and natural environments. Emphasis is placed on achieving function and sustainability through choice of materials and processes, compatibility with natural cycles, and the use of active or adaptive systems. The course also encourages development of hands-on skills, teamwork, and communication; exercises and projects engage students in the building, implementation, and testing of their designs.

Subject:
Applied Science
Engineering
Environmental Science
Material Type:
Full Course
Provider Set:
MIT OpenCourseWare
Author:
Bucciarelli, Louis
Frankel, Sheila
Hemond, Harold
Nepf, Heidi
Date Added:
09/01/2005
Let's Get Breezy!
Read the Fine Print
Educational Use
Rating
0.0 stars

With the assistance of a few teacher demonstrations (online animation, using a radiometer and rubbing hands), students review the concept of heat transfer through convection, conduction and radiation. Then they apply an understanding of these ideas as they use wireless temperature probes to investigate the heating capacity of different materials sand and water under heat lamps (or outside in full sunshine). The experiment models how radiant energy drives convection within the atmosphere and oceans, thus producing winds and weather conditions, while giving students the hands-on opportunity to understand the value of remote-sensing capabilities designed by engineers. Students collect and record temperature data on how fast sand and water heat and cool. Then they create multi-line graphs to display and compare their data, and discuss the need for efficient and reliable engineer-designed tools like wireless sensors in real-world applications.

Subject:
Applied Science
Engineering
Physical Science
Physics
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Constance Garza
Mounir Ben Ghalia
Date Added:
10/14/2015
Model Greenhouses
Read the Fine Print
Educational Use
Rating
0.0 stars

Students learn about the advantages and disadvantages of the greenhouse effect. They construct their own miniature greenhouses and explore how their designs take advantage of heat transfer processes to create controlled environments. They record and graph measurements, comparing the greenhouse indoor and outdoor temperatures over time. Students are also introduced to global issues such as greenhouse gas emissions and their relationship to global warming.

Subject:
Applied Science
Atmospheric Science
Engineering
Physical Science
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Denise W. Carlson
Landon B. Gennetten
Lauren Cooper
Malinda Schaefer Zarske
Date Added:
10/14/2015
Optimize! Cleaner Energy Options for Rural China
Read the Fine Print
Educational Use
Rating
0.0 stars

Students work in engineering teams to optimize cleaner energy solutions for cooking and heating in rural China. They choose between various options for heating, cooking, hot water, and lights and other electricity, balancing between the cost and health effects of different energy choices.

Subject:
Applied Science
Engineering
Environmental Science
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Abigail T. Watrous
Denise W. Carlson
Janet Yowell
Stephanie Rivale
Date Added:
09/18/2014
Rural Energy in China: How Can Engineers Make a Difference?
Read the Fine Print
Educational Use
Rating
0.0 stars

Students learn about five types of renewable energy that are part of engineering solutions to help people in rural communities use less and cleaner energy for cooking and heating. Specifically, students learn about the pollution and health challenges facing families in rural China, and they are introduced to the concept of optimization. Through an energy game, students differentiate between renewable and non-renewable sources of energy.

Subject:
Applied Science
Engineering
Environmental Science
Material Type:
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Abigail T. Watrous
Denise W. Carlson
Janet Yowell
Stephanie Rivale
Date Added:
09/18/2014
Temperature Tells All!
Read the Fine Print
Educational Use
Rating
0.0 stars

Students are introduced to the health risks caused by cooking and heating with inefficient cook stoves inside homes, a common practice in rural developing communities. Students simulate the cook stove scenario and use the engineering design process, including iterative trials, to increase warmth inside a building while reducing air quality problems. Students then collect and graph data, and analyze their findings.

Subject:
Applied Science
Architecture and Design
Engineering
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Carleigh Samson
Jacqueline Godina
Janet Yowell
Marissa H. Forbes
Odessa Gomez
Date Added:
09/18/2014
Utility Solar Thermal and Industrial Solar Processes
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

Solar thermal energy is a vast renewable energy resource that has been harvested by human civilizations for centuries. Now as energy conversion technologies quickly develop, we look at solar thermal energy as a significant contributor to the future world's energy profile. Solar heat, when properly collected and stored, can provide cost-effective benefits to a wide array of industrial and residential applications. In EME 811, Solar Thermal Energy for Utilities and Industry, we talk about both the main principles of solar thermal energy conversion and some implementation scenarios, such as utilization of solar heat in buildings, solar cooling, solar desalination, solar drying, and chemical processing.

Subject:
Applied Science
Career and Technical Education
Environmental Science
Environmental Studies
Material Type:
Full Course
Provider:
Penn State College of Earth and Mineral Sciences
Author:
Lucas Witmer
Mark Fedkin
Date Added:
10/07/2019
VETTED - Heating, Ventilation and Air Conditioning Curriculum Year 1, Heating, Ventilation and Air Conditioning Curriculum Overview, Heating, Ventilation and Air Conditioning Instructional Resources
Only Sharing Permitted
CC BY-NC-ND
Rating
0.0 stars

Heating, Ventilation, and Air Conditioning Instructional Resources including Professional Skill Standards and Identified Industry Certifications List.

Material Type:
Teaching/Learning Strategy
Author:
OER LIBRARIAN
Date Added:
03/09/2022