Updating search results...

Search Resources

7 Results

View
Selected filters:
  • microalgae
Alternative Fuels from Biomass Sources
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

Is climate change real? Yes, it is! And technologies to reduce Greenhouse Gas (GHG) emissions are being developed. One type of technology that is imperative in the short run is biofuels; however, biofuels must meet specifications for gasoline, diesel, and jet fuel, or catastrophic damage could occur. This course will examine the chemistry of technologies of bio-based sources for power generation and transportation fuels. We'll consider various biomasses that can be utilized for fuel generation, understand the processes necessary for biomass processing, explore biorefining, and analyze how biofuels can be used in current fuel infrastructure.

Subject:
Chemistry
Physical Science
Material Type:
Full Course
Provider:
Penn State College of Earth and Mineral Sciences
Author:
Caroline Clifford
Date Added:
10/07/2019
Biorecycling: Using Nature to Make Resources from Waste
Read the Fine Print
Educational Use
Rating
0.0 stars

By studying key processes in the carbon cycle, such as photosynthesis, composting and anaerobic digestion, students learn how nature and engineers "biorecycle" carbon. Students are exposed to examples of how microbes play many roles in various systems to recycle organic materials and also learn how the carbon cycle can be used to make or release energy.

Subject:
Applied Science
Atmospheric Science
Engineering
Physical Science
Material Type:
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Caryssa Joustra
Daniel Yeh
Emanuel Burch
George Dick
Herby Jean
Ivy Drexler
Jorge Calabria
Lyudmila Haralampieva
Matthew Woodham
Onur Ozcan
Robert Bair
Stephanie Quintero
Date Added:
09/18/2014
Extra benefit of microalgae in raw piggery wastewater treatment: pathogen reduction
Unrestricted Use
CC BY
Rating
0.0 stars

This resource is a video abstract of a research paper created by Research Square on behalf of its authors. It provides a synopsis that's easy to understand, and can be used to introduce the topics it covers to students, researchers, and the general public. The video's transcript is also provided in full, with a portion provided below for preview:

"Managing wastewater is a major logistical puzzle that impacts the environment, the climate, and public health. While metropolitan wastewater typically undergoes complex processing and sanitation, rural livestock wastewater is often simply composted for fertilizer, but composting can release harmful contaminants like ammonia, CO₂, and methane. One way to still capture the nutrients with fewer harmful byproducts is by cultivating microalgae, which actually absorb CO₂ via photosynthesis rather than producing it. But how do microalgae impact pathogens? A recent pilot study using raw piggery wastewater found that microalgae cultivation dramatically reduced the pathogen load while also triggering a dramatic shift in the overall bacterial community composition. Further investigation using the most abundant pathogen, Oligella, found that the microalgae weren’t impacting Oligella directly. Rather, microalgae cultivation reduced Oligella abundance through a network of other bacterial species..."

The rest of the transcript, along with a link to the research itself, is available on the resource itself.

Subject:
Biology
Life Science
Material Type:
Diagram/Illustration
Reading
Provider:
Research Square
Provider Set:
Video Bytes
Date Added:
04/14/2023
The Great Algae Race
Read the Fine Print
Educational Use
Rating
0.0 stars

In a multi-week experiment, student groups gather data from the photobioreactors that they build to investigate growth conditions that make algae thrive best. Using plastic soda bottles, pond water and fish tank aerators, they vary the amount of carbon dioxide (or nutrients or sunlight, as an extension) available to the microalgae. They compare growth in aerated vs. non-aerated conditions. They measure growth by comparing the color of their algae cultures in the bottles to a color indicator scale. Then they graph and analyze the collected data to see which had the fastest growth. Students learn how plants biorecycle carbon dioxide into organic carbon (part of the carbon cycle) and how engineers apply their understanding of this process to maximize biofuel production.

Subject:
Applied Science
Engineering
Environmental Science
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Caryssa Joustra
Daniel Yeh
Emanuel Burch
George Dick
Herby Jean
Ivy Drexler
Jorge Calabria
Lyudmila Haralampieva
Matthew Woodham
Onur Ozcan
Robert Bair
Stephanie Quintero
Date Added:
09/18/2014
Grow Your Own Algae!
Read the Fine Print
Educational Use
Rating
0.0 stars

Students discover how tiny microscopic plants can remove nutrients from polluted water. They also learn how to engineer a system to remove pollutants faster and faster by changing the environment for the algae.

Subject:
Applied Science
Engineering
Environmental Science
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Dayna Lee Martinez
Tapas K. Das
Date Added:
09/18/2014
Polysaccharides in the water help shape bacterial communities after algal blooms
Unrestricted Use
CC BY
Rating
0.0 stars

This resource is a video abstract of a research paper created by Research Square on behalf of its authors. It provides a synopsis that's easy to understand, and can be used to introduce the topics it covers to students, researchers, and the general public. The video's transcript is also provided in full, with a portion provided below for preview:

"The global carbon cycle is a critical process that moves carbon from the atmosphere into plant and animal materials and then back into the atmosphere. Two major parts of this cycle are microalgae blooms in the oceans and bacterial blooms that occur when the microalgae die. Microalgae are made mostly of polysaccharides, so polysaccharide breakdown is an important aspect of the bacterial blooms. To learn more bloom dynamics, researchers recently sampled the water at 30 time points during a two-phase spring bloom in the German Bight. They were able to reconstruct 251 genomes of planktonic bacteria, 50 of which were particularly abundant and active. These 50 genomes represented many polysaccharide-degrading bacteria. β-Glucans and α-glucans were the most abundant and actively metabolized polysaccharides in the water. The bacteria degraded both types of glucans throughout the whole bloom, but the expression of α-glucan degrading genes peaked at the start of the second phase..."

The rest of the transcript, along with a link to the research itself, is available on the resource itself.

Subject:
Biology
Life Science
Material Type:
Diagram/Illustration
Reading
Provider:
Research Square
Provider Set:
Video Bytes
Date Added:
04/24/2023
A new type of flexible CP12 protein in the marine diatom Thalassiosira pseudonana
Unrestricted Use
CC BY
Rating
0.0 stars

This resource is a video abstract of a research paper created by Research Square on behalf of its authors. It provides a synopsis that's easy to understand, and can be used to introduce the topics it covers to students, researchers, and the general public. The video's transcript is also provided in full, with a portion provided below for preview:

"Chloroplast protein of 12 kDa (CP12) participates in the Calvin Benson Bassham (CBB) cycle and many other processes in higher plants, microalgae, and cyanobacteria. The CP12-encoding gene is conserved in many diatoms, but CBB cycle regulation differs between diatoms and other photosynthetic organisms, and CP12 has not been characterized in these ecologically important and evolutionarily complex microalgae. A recent study addressed this knowledge gap by characterizing CP12 in the marine diatom Thalassiosira pseudonana. Using a variety of techniques, researchers found that this CP12 is expressed under both light and dark conditions and throughout growth and that it exhibits some features of intrinsically disordered proteins, like CP12 proteins in other organisms. The protein is an elongated cylinder with kinks and numerous unstable dynamic α-helices. In addition, it exists as a dimer, in contrast to previously characterized monomeric CP12s..."

The rest of the transcript, along with a link to the research itself, is available on the resource itself.

Subject:
Biology
Life Science
Material Type:
Diagram/Illustration
Reading
Provider:
Research Square
Provider Set:
Video Bytes
Date Added:
10/14/2021