Updating search results...

Search Resources

7 Results

View
Selected filters:
  • phosphodiesterase
Biology
Unrestricted Use
CC BY
Rating
0.0 stars

Biology is designed for multi-semester biology courses for science majors. It is grounded on an evolutionary basis and includes exciting features that highlight careers in the biological sciences and everyday applications of the concepts at hand. To meet the needs of today’s instructors and students, some content has been strategically condensed while maintaining the overall scope and coverage of traditional texts for this course. Instructors can customize the book, adapting it to the approach that works best in their classroom. Biology also includes an innovative art program that incorporates critical thinking and clicker questions to help students understand—and apply—key concepts.

Subject:
Biology
Life Science
Material Type:
Full Course
Provider:
Rice University
Provider Set:
OpenStax College
Date Added:
08/22/2012
Biology, The Cell, Cell Communication, Response to the Signal
Conditional Remix & Share Permitted
CC BY-NC
Rating
0.0 stars

By the end of this section, you will be able to:Describe how signaling pathways direct protein expression, cellular metabolism, and cell growthIdentify the function of PKC in signal transduction pathwaysRecognize the role of apoptosis in the development and maintenance of a healthy organism

Subject:
Applied Science
Biology
Material Type:
Module
Date Added:
07/10/2017
A G protein and PDE enzymes help regulate adrenergic signaling for cardiac control
Unrestricted Use
CC BY
Rating
0.0 stars

This resource is a video abstract of a research paper created by Research Square on behalf of its authors. It provides a synopsis that's easy to understand, and can be used to introduce the topics it covers to students, researchers, and the general public. The video's transcript is also provided in full, with a portion provided below for preview:

"The pumping action of the heart is tightly regulated by many factors. For example, the ion channel proteins RyR2 and SERCA2a regulate cardiac contraction via the β adrenergic receptor (βAR) pathway and under stress conditions, βAR stimulation promotes the enzyme activity of PKA to ultimately enhance cardiac contraction and relaxation. However, it’s unclear exactly how βAR-stimulated PKA dynamically affects RyR2 and SERCA2a within their nano-scale subcellular domains. To learn more, researchers recently used biosensors to detect PKA activity at these nanodomains in heart cells from mice, rats, and rabbits. They found that the βAR subtype β₁AR signaled to both RyR2 and SERCA2a nanodomains via PKA, while β₂AR did not. Specifically, β₂AR signaling at these nanodomains was prevented by the enzymes PDE3 and PDE4, which controlled baseline PKA activity, but blocking an inhibitory G protein permitted β₂AR signaling at the RyR2 nanodomains..."

The rest of the transcript, along with a link to the research itself, is available on the resource itself.

Subject:
Biology
Life Science
Material Type:
Diagram/Illustration
Reading
Provider:
Research Square
Provider Set:
Video Bytes
Date Added:
04/14/2023