Biology is designed for multi-semester biology courses for science majors. It is …
Biology is designed for multi-semester biology courses for science majors. It is grounded on an evolutionary basis and includes exciting features that highlight careers in the biological sciences and everyday applications of the concepts at hand. To meet the needs of today’s instructors and students, some content has been strategically condensed while maintaining the overall scope and coverage of traditional texts for this course. Instructors can customize the book, adapting it to the approach that works best in their classroom. Biology also includes an innovative art program that incorporates critical thinking and clicker questions to help students understand—and apply—key concepts.
By the end of this section, you will be able to:Describe the …
By the end of this section, you will be able to:Describe the structure of nucleic acids and define the two types of nucleic acidsExplain the structure and role of DNAExplain the structure and roles of RNA
This course will explore the current frontiers of the world of RNA …
This course will explore the current frontiers of the world of RNA biology with primary research papers to trace how the original odd detail sometimes leads to major discoveries. As we discuss the different transcripts and processing events that enable this exciting diversity of RNA functions, we invite you to read landmark papers with us, think critically, and ask new questions, as we marvel at the wonders of RNA. This course is one of many Advanced Undergraduate Seminars offered by the Biology Department at MIT. These seminars are tailored for students with an interest in using primary research literature to discuss and learn about current biological research in a highly interactive setting. Many instructors of the Advanced Undergraduate Seminars are postdoctoral scientists with a strong interest in teaching.
This resource is a video abstract of a research paper created by …
This resource is a video abstract of a research paper created by Research Square on behalf of its authors. It provides a synopsis that's easy to understand, and can be used to introduce the topics it covers to students, researchers, and the general public. The video's transcript is also provided in full, with a portion provided below for preview:
"The 16S rRNA gene is widely used for bacterial phylogenetics, species delineation, and microbiome research. Historically, researchers assumed that sequence variations in this gene were only due to speciation and inheritance. But there are reports of recombination events and an unreliable phylogenetic signal. To examine this directly, researchers performed four intra-genus analyses and one inter-genus analysis using pathogenic and core human microbiome genera. In all analyses, the 16S rRNA gene was recombinant and subject to horizontal gene transfer. At the intra-genus level, the 16S rRNA gene averaged 50.7% concordance with the species phylogeny, one of the lowest of the core genes. Further analysis found that the single nucleotide polymorphism (SNP) count was a major factor influencing concordance. 690 ± 110 SNPs would be required to reach 80% concordance, but the average SNP count for the 16S rRNA gene was only 254..."
The rest of the transcript, along with a link to the research itself, is available on the resource itself.
No restrictions on your remixing, redistributing, or making derivative works. Give credit to the author, as required.
Your remixing, redistributing, or making derivatives works comes with some restrictions, including how it is shared.
Your redistributing comes with some restrictions. Do not remix or make derivative works.
Most restrictive license type. Prohibits most uses, sharing, and any changes.
Copyrighted materials, available under Fair Use and the TEACH Act for US-based educators, or other custom arrangements. Go to the resource provider to see their individual restrictions.