Updating search results...

Search Resources

8 Results

View
Selected filters:
  • secondary-structure
Biology
Unrestricted Use
CC BY
Rating
0.0 stars

Biology is designed for multi-semester biology courses for science majors. It is grounded on an evolutionary basis and includes exciting features that highlight careers in the biological sciences and everyday applications of the concepts at hand. To meet the needs of today’s instructors and students, some content has been strategically condensed while maintaining the overall scope and coverage of traditional texts for this course. Instructors can customize the book, adapting it to the approach that works best in their classroom. Biology also includes an innovative art program that incorporates critical thinking and clicker questions to help students understand—and apply—key concepts.

Subject:
Biology
Life Science
Material Type:
Full Course
Provider:
Rice University
Provider Set:
OpenStax College
Date Added:
08/22/2012
Biology, The Chemistry of Life, Biological Macromolecules, Proteins
Conditional Remix & Share Permitted
CC BY-NC
Rating
0.0 stars

By the end of this section, you will be able to:Describe the functions proteins perform in the cell and in tissuesDiscuss the relationship between amino acids and proteinsExplain the four levels of protein organizationDescribe the ways in which protein shape and function are linked

Subject:
Applied Science
Biology
Life Science
Material Type:
Module
Date Added:
07/10/2017
DNA, Hot Pockets, & The Longest Word Ever: Crash Course Biology #11
Read the Fine Print
Some Rights Reserved
Rating
0.0 stars

Hank imagines himself breaking into the Hot Pockets factory to steal their secret recipes and instruction manuals in order to help us understand how the processes known as DNA transcription and translation allow our cells to build proteins.

Chapters:
1) Transcription
A) Transcription Unit
B) Promoter
C) TATA Box
D) RNA Polymerase
E) mRNA
F) Termination signal
G) 5' Cap & Poly-A Tail
2) RNA Splicing
A) SNuRPs & Spliceosome
B) Exons & Introns
3) Translation
A) mRNA & tRNA
B) Triplet Codons & Anticodons
4) Folding & Protein Structure
A) Primary Structure
B) Secondary Structure
C) Tertiary Structure
D) Quaternary Structure

Subject:
Biology
Life Science
Material Type:
Lecture
Provider:
Complexly
Provider Set:
Crash Course Biology (2012)
Date Added:
04/09/2012
Fundamentals of Biology
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

Fundamentals of Biology focuses on the basic principles of biochemistry, molecular biology, genetics, and recombinant DNA. These principles are necessary to understanding the basic mechanisms of life and anchor the biological knowledge that is required to understand many of the challenges in everyday life, from human health and disease to loss of biodiversity and environmental quality.
Course Format

This course has been designed for independent study. It consists of four units, one for each topic. The units can be used individually or in combination. The materials for each unit include:

Lecture Videos by MIT faculty.
Learning activities, including Interactive Concept Quizzes, designed to reinforce main concepts from lectures.
Problem Sets you do on your own and check your answers against the Solutions when you’re done.
Problem Solving Video help sessions taught by experienced MIT Teaching Assistants.
Lists of important Terms and Definitions.
Suggested Topics and Links for further study.
Exams with Solution Keys.

Content Development

Eric Lander
Robert Weinberg
Tyler Jacks
Hazel Sive
Graham Walker
Sallie Chisholm
Dr. Michelle Mischke

Subject:
Biology
Life Science
Material Type:
Full Course
Provider:
MIT
Provider Set:
MIT OpenCourseWare
Author:
Chisholm, Sallie
Jacks, Tyler
Lander, Eric
Mischke, Michelle
Sive, Hazel
Walker, Graham
Weinberg, Robert
Date Added:
09/01/2011
Fundamentals of Biology
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

Fundamentals of Biology focuses on the basic principles of biochemistry, molecular biology, genetics, and recombinant DNA. These principles are necessary to understanding the basic mechanisms of life and anchor the biological knowledge that is required to understand many of the challenges in everyday life, from human health and disease to loss of biodiversity and environmental quality.
Course Format

This course has been designed for independent study. It consists of four units, one for each topic. The units can be used individually or in combination. The materials for each unit include:

Lecture Videos by MIT faculty.
Learning activities, including Interactive Concept Quizzes, designed to reinforce main concepts from lectures.
Problem Sets you do on your own and check your answers against the Solutions when you’re done.
Problem Solving Video help sessions taught by experienced MIT Teaching Assistants.
Lists of important Terms and Definitions.
Suggested Topics and Links for further study.
Exams with Solution Keys.

Content Development

Eric Lander
Robert Weinberg
Tyler Jacks
Hazel Sive
Graham Walker
Sallie Chisholm
Dr. Michelle Mischke

Subject:
Biology
Life Science
Physical Science
Material Type:
Full Course
Provider:
MIT
Provider Set:
MIT OpenCourseWare
Author:
Chisholm, Sallie
Jacks, Tyler
Lander, Eric
Mischke, Michelle
Sive, Hazel
Walker, Graham
Weinberg, Robert
Date Added:
09/01/2011
Intrinsically disordered proteins play diverse roles in cell signaling
Unrestricted Use
CC BY
Rating
0.0 stars

This resource is a video abstract of a research paper created by Research Square on behalf of its authors. It provides a synopsis that's easy to understand, and can be used to introduce the topics it covers to students, researchers, and the general public. The video's transcript is also provided in full, with a portion provided below for preview:

"Molecular signaling pathways are crucial for cellular function and communication. In order to work properly, the pathways must be sensitive, adaptable, and tunable to specific stimuli and situations. These essential qualities are made possible by intrinsically disordered proteins (IDPs). IDPs can’t fold into stable, defined structures on their own, but many IDPs can gain at least some structure when they bind with specific partners. These and other interactions change the IDPs’ conformations to enable specific and reversible binding, giving the signaling pathways the sensitivity and flexibility they need to function correctly. Algorithms and other computational tools can help identify IDPs and predict their functions. So far, such tools have revealed that IDPs are pervasive in all kingdoms of life. In addition, they’ve shown that IDPs help relay signals from diverse stimuli, such as ions, lipids, proteins, chemicals, and environmental cues in every category of cell signaling pathway and at every step..."

The rest of the transcript, along with a link to the research itself, is available on the resource itself.

Subject:
Biology
Life Science
Material Type:
Diagram/Illustration
Reading
Provider:
Research Square
Provider Set:
Video Bytes
Date Added:
05/18/2022