Students will create an interactive Powerpoint game where they will create real …
Students will create an interactive Powerpoint game where they will create real world problems that are used as clues to move on to the next level. Problems include all 8th grade math standards.
A collection of relevant lessons to supplement your units in Algebra I/II. …
A collection of relevant lessons to supplement your units in Algebra I/II. Mix these lessons into your course to show students the algebraic reasoning behind social issues, public health, the environment, business, sports, and more.
"Students connect polynomial arithmetic to computations with whole numbers and integers. Students …
"Students connect polynomial arithmetic to computations with whole numbers and integers. Students learn that the arithmetic of rational expressions is governed by the same rules as the arithmetic of rational numbers. This unit helps students see connections between solutions to polynomial equations, zeros of polynomials, and graphs of polynomial functions. Polynomial equations are solved over the set of complex numbers, leading to a beginning understanding of the fundamental theorem of algebra. Application and modeling problems connect multiple representations and include both real world and purely mathematical situations.
Find the rest of the EngageNY Mathematics resources at https://archive.org/details/engageny-mathematics.
(Nota: Esta es una traducción de un recurso educativo abierto creado por …
(Nota: Esta es una traducción de un recurso educativo abierto creado por el Departamento de Educación del Estado de Nueva York (NYSED) como parte del proyecto "EngageNY" en 2013. Aunque el recurso real fue traducido por personas, la siguiente descripción se tradujo del inglés original usando Google Translate para ayudar a los usuarios potenciales a decidir si se adapta a sus necesidades y puede contener errores gramaticales o lingüísticos. La descripción original en inglés también se proporciona a continuación.)
"Los estudiantes conectan la aritmética polinomial con los cálculos con números enteros e enteros. Los estudiantes aprenden que la aritmética de las expresiones racionales se rige por las mismas reglas que la aritmética de los números racionales. Esta unidad ayuda a los estudiantes a ver conexiones entre soluciones a ecuaciones polinomiales, ceros de polinomiales,, y gráficos de funciones polinómicas. Las ecuaciones polinomiales se resuelven sobre el conjunto de números complejos, lo que lleva a una comprensión inicial del teorema fundamental del álgebra. Los problemas de aplicación y modelado conectan múltiples representaciones e incluyen situaciones de mundo real y puramente matemáticas.
Encuentre el resto de los recursos matemáticos de Engageny en https://archive.org/details/engageny-mathematics.
English Description: "Students connect polynomial arithmetic to computations with whole numbers and integers. Students learn that the arithmetic of rational expressions is governed by the same rules as the arithmetic of rational numbers. This unit helps students see connections between solutions to polynomial equations, zeros of polynomials, and graphs of polynomial functions. Polynomial equations are solved over the set of complex numbers, leading to a beginning understanding of the fundamental theorem of algebra. Application and modeling problems connect multiple representations and include both real world and purely mathematical situations.
Find the rest of the EngageNY Mathematics resources at https://archive.org/details/engageny-mathematics.
This lesson unit is intended to help you assess how well students …
This lesson unit is intended to help you assess how well students are able to manipulate and calculate with polynomials. In particular, it aims to identify and help students who have difficulties in: switching between visual and algebraic representations of polynomial expressions; and performing arithmetic operations on algebraic representations of polynomials, factorizing and expanding appropriately when it helps to make the operations easier.
The purpose of this task is to emphasize the use of the …
The purpose of this task is to emphasize the use of the Remainder Theorem (a discussion of which should obviously be considered as a prerequisite for the task) as a method for determining structure in polynomial in equations, and in this particular instance, as a replacement for division of polynomials.
The purpose of this lesson is for students to discover the connection …
The purpose of this lesson is for students to discover the connection between the algebraic and the graphical structure of polynomial functions. This lesson leads to students being able to sketch a graph by identifying the end behavior, intercepts, and multiplicities from a given polynomial equation. It also leads to students being able to write a possible equation by determining the sign of the leading coefficient, minimum possible degree, x-intercepts and y-intercept from a given polynomial graph.
This task looks at zeroes and factorization of a general polynomial. It …
This task looks at zeroes and factorization of a general polynomial. It is related to a very deep theorem in mathematics, the Fundamental Theorem of Algebra, which says that a polynomial of degree d always has exactly d roots, provided complex numbers are allowed as roots and provided roots are counted with the proper "multiplicity.''
The intention of this task is to provide extra depth to the …
The intention of this task is to provide extra depth to the standard A-APR.2 it is principally designed for instructional purposes only. The students may use graphing technology: the focus, however, should be on what happens to the function g when x=0 and the calculator may or may not be of help here (depending on how sophisticated it is!).
For a polynomial function p, a real number r is a root …
For a polynomial function p, a real number r is a root of p if and only if p(x) is evenly divisible by x_r. This fact leads to one of the important properties of polynomial functions: a polynomial of degree d can have at most d roots. This is the first of a sequence of problems aiming at showing this fact.
This task continues ``Zeroes and factorization of a quadratic polynomial I.'' The …
This task continues ``Zeroes and factorization of a quadratic polynomial I.'' The argument here generalizes, as shown in ``Zeroes and factorization of a general polynomial'' to show that a polynomial of degree d can have at most d roots. This task is intended for instructional purposes to help students see more clearly the link between factorization of polynomials and zeroes of polynomial functions.
No restrictions on your remixing, redistributing, or making derivative works. Give credit to the author, as required.
Your remixing, redistributing, or making derivatives works comes with some restrictions, including how it is shared.
Your redistributing comes with some restrictions. Do not remix or make derivative works.
Most restrictive license type. Prohibits most uses, sharing, and any changes.
Copyrighted materials, available under Fair Use and the TEACH Act for US-based educators, or other custom arrangements. Go to the resource provider to see their individual restrictions.