Updating search results...

Search Resources

32 Results

View
Selected filters:
  • MCCRS.Math.Content.6.NS.A.1 - Interpret and compute quotients of fractions, and solve word problems ...
  • MCCRS.Math.Content.6.NS.A.1 - Interpret and compute quotients of fractions, and solve word problems ...
5.NF Standing in Line
Unrestricted Use
CC BY
Rating
0.0 stars

This is a task from the Illustrative Mathematics website that is one part of a complete illustration of the standard to which it is aligned. Each task has at least one solution and some commentary that addresses important aspects of the task and its potential use. Here are the first few lines of the commentary for this task: Alysha really wants to ride her favorite ride at the amusement park one more time before her parents pick her up at 2:30 pm. There is a very long line ...

Subject:
Mathematics
Material Type:
Activity/Lab
Provider:
Illustrative Mathematics
Provider Set:
Illustrative Mathematics
Author:
Illustrative Mathematics
Date Added:
02/27/2014
Dividing Whole Numbers by Simple Fractions: Area Models
Conditional Remix & Share Permitted
CC BY-SA
Rating
0.0 stars

Lesson Standard(s): 6.NS.1 Compute and represent quotients of positive fractions using a variety of procedures (e.g., visual models, equations, and real- world situations). Process Standard (s):4: Connect mathematical ideas and real-world situations through modeling.b) Interpret mathematical models in the context of the situation.d) Evaluate the reasonableness of the model and refine if necessary.Lesson Objective(s):Students will exhibit their prior knowledge of dividing whole numbers using area models.After exploration through videos, manipulatives, and drawings, students will represent the quotient of a whole number divided by a fraction using area models.See attachments for lesson plan, PowerPoint presentation, and worksheet. 

Subject:
Numbers and Operations
Material Type:
Activity/Lab
Homework/Assignment
Lesson
Lesson Plan
Author:
Brandy Head
Date Added:
06/14/2022
How Many Containers in One Cup / Cups in One Container?
Unrestricted Use
CC BY
Rating
0.0 stars

These two fraction division tasks use the same context and ask ŇHow much in one group?Ó but require students to divide the fractions in the opposite order. Students struggle to understand which order one should divide in a fraction division context, and these two tasks give them an opportunity to think carefully about the meaning of fraction division.

Subject:
Mathematics
Material Type:
Activity/Lab
Provider:
Illustrative Mathematics
Provider Set:
Illustrative Mathematics
Author:
Illustrative Mathematics
Date Added:
05/01/2012
Making Hot Cocoa, Variation 1
Unrestricted Use
CC BY
Rating
0.0 stars

This is the first of two fraction division tasks that use similar contexts to highlight the difference between the ŇNumber of Groups UnknownÓ a.k.a. ŇHow many groups?Ó (Variation 1) and ŇGroup Size UnknownÓ a.k.a. ŇHow many in each group?Ó (Variation 2) division problems.

Subject:
Mathematics
Material Type:
Activity/Lab
Provider:
Illustrative Mathematics
Provider Set:
Illustrative Mathematics
Author:
Illustrative Mathematics
Date Added:
05/01/2012
Making Hot Cocoa, Variation 2
Unrestricted Use
CC BY
Rating
0.0 stars

This is the second of two fraction division tasks that use similar contexts to highlight the difference between the ŇNumber of Groups UnknownÓ a.k.a. ŇHow many groups?Ó (Variation 1) and ŇGroup Size UnknownÓ a.k.a. ŇHow many in each group?Ó (Variation 2) division problems.

Subject:
Mathematics
Material Type:
Activity/Lab
Provider:
Illustrative Mathematics
Provider Set:
Illustrative Mathematics
Author:
Illustrative Mathematics
Date Added:
05/01/2012
Math, Grade 6, Fractions and Decimals
Conditional Remix & Share Permitted
CC BY-NC
Rating
0.0 stars

Fractions and Decimals

Type of Unit: Concept

Prior Knowledge

Students should be able to:

Multiply and divide whole numbers and decimals.
Multiply a fraction by a whole number.
Multiply a fraction by another fraction.
Write fractions in equivalent forms, including converting between improper fractions and mixed numbers.
Understand the meaning and structure of decimal numbers.

Lesson Flow

This unit extends students’ learning from Grade 5 about operations with fractions and decimals.

The first lesson informally introduces the idea of dividing a fraction by a fraction. Students are challenged to figure out how many times a 14-cup measuring cup must be filled to measure the ingredients in a recipe. Students use a variety of methods, including adding 14 repeatedly until the sum is the desired amount, and drawing a model. In Lesson 2, students focus on dividing a fraction by a whole number. They make a model of the fraction—an area model, bar model, number line, or some other model—and then divide the model into whole numbers of groups. Students also work without a model by looking at the inverse relationship between division and multiplication. Students explore methods for dividing a whole number by a fraction in Lesson 3, for dividing a fraction by a unit fraction in Lesson 4, and for dividing a fraction by another fraction in Lesson 6. Students examine several methods and models for solving such problems, and use models to solve similar problems.

Students apply their learning to real-world contexts in Lesson 6 as they solve word problems that require dividing and multiplying mixed numbers. Lesson 7 is a Gallery lesson in which students choose from a number of problems that reinforce their learning from the previous lessons.

Students review the standard long-division algorithm for dividing whole numbers in Lesson 8. They discuss the different ways that an answer to a whole number division problem can be expressed (as a whole number plus a remainder, as a mixed number, or as a decimal). Students then solve a series of real-world problems that require the same whole number division operation, but have different answers because of how the remainder is interpreted.

Students focus on decimal operations in Lessons 9 and 10. In Lesson 9, they review addition, subtraction, multiplication, and division with decimals. They solve decimal problems using mental math, and then work on a card sort activity in which they must match problems with diagram and solution cards. In Lesson 10, students review the algorithms for the four basic decimal operations, and use estimation or other methods to place the decimal points in products and quotients. They solve multistep word problems involving decimal operations.

In Lesson 11, students explore whether multiplication always results in a greater number and whether division always results in a smaller number. They work on a Self Check problem in which they apply what they have learned to a real-world problem. Students consolidate their learning in Lesson 12 by critiquing and improving their work on the Self Check problem from the previous lesson. The unit ends with a second set of Gallery problems that students complete over two lessons.

Subject:
Mathematics
Ratios and Proportions
Material Type:
Unit of Study
Provider:
Pearson
Math, Grade 6, Fractions and Decimals, Cooking with Fractions
Conditional Remix & Share Permitted
CC BY-NC
Rating
0.0 stars

Students determine how many times they would need to fill a quarter cup to measure the ingredients in a recipe.Key ConceptsThis lesson informally introduces the idea of dividing by a fraction. Students must figure out how many times a quarter cup must be filled to measure the ingredients in a recipe. This involves dividing each amount by 14. Here are some methods students might use:Add 14 repeatedly until the sum is the desired amount. Count the number of 14s that were added.Start with the amount in the recipe. Subtract 14 repeatedly until the difference is 0. Count the 14s that were subtracted.Draw a model (e.g., a bar or a number line model) to represent the amount in the recipe. Divide it into fourths and count the number of fourths.Goals and Learning ObjectivesLearn how to divide by a fraction.

Subject:
Ratios and Proportions
Material Type:
Lesson Plan
Date Added:
09/21/2015
Math, Grade 6, Fractions and Decimals, Divide a Fraction by a Fraction
Conditional Remix & Share Permitted
CC BY-NC
Rating
0.0 stars

Students explore methods of dividing a fraction by a unit fraction.Key ConceptsIn this lesson and in Lesson 5, students explore dividing a fraction by a fraction.In this lesson, we focus on the case in which the divisor is a unit fraction. Understanding this case makes it easier to see why we can divide by a fraction by multiplying by its reciprocal. For example, finding 34÷15 means finding the number of fifths in 34. In this lesson, students will see that this is 34 × 5.Students learn and apply several methods for dividing a fraction by a unit fraction, such as 23÷14.Model 23. Change the model and the fractions in the problem to twelfths: 812÷312. Then find the number of groups of 3 twelfths in 8 twelfths. This is the same as finding 8 ÷ 3.Reason that since there are 4 fourths in 1, there must be 23 × 4 fourths in 23. This is the same as using the multiplicative inverse.Rewrite both fractions so they have a common denominator: 23÷14=812÷312. The answer is the quotient of the numerators. This is the numerical analog to modeling.Goals and Learning ObjectivesUse models and other methods to divide fractions by unit fractions

Subject:
Numbers and Operations
Material Type:
Lesson Plan
Date Added:
09/21/2015
Math, Grade 6, Fractions and Decimals, Division
Conditional Remix & Share Permitted
CC BY-NC
Rating
0.0 stars

Students use models and the idea of dividing as making equal groups to divide a fraction by a whole number.SWD: Some students with disabilities will benefit from a preview of the goals in each lesson. Students can highlight the critical features or concepts in order to help them pay close attention to salient information.Key ConceptsWhen we divide a whole number by a whole number n, we can think of making n equal groups and finding the size of each group. We can think about dividing a fraction by a whole number in the same way.8 ÷ 4 = 2 When we make 4 equal groups, there are 2 wholes in each group.89÷4=29  When we make 4 equal groups, there are 2 ninths in each group.When the given fraction cannot be divided into equal groups of unit fractions, we can break each unit fraction part into smaller parts to form an equivalent fraction.34 ÷ 6 = ?     68 ÷ 6 = ?     68 ÷ 6 = 18  Students see that, in general, we can divide a fraction by a whole number by dividing the numerator by the whole number. Note that this is consistent with the “multiply by the reciprocal” method.ab÷n=a÷nb=anb=an×1b=an×b=ab×1nGoals and Learning ObjectivesUse models to divide a fraction by a whole number.Learn general methods for dividing a fraction by a whole number without using a model. 

Subject:
Numbers and Operations
Material Type:
Lesson Plan
Date Added:
09/21/2015