## Description

- Overview:
- The intent of clarifying statements is to provide additional guidance for educators to communicate the intent of the standard to support the future development of curricular resources and assessments aligned to the 2021 math standards. Clarifying statements can be in the form of succinct sentences or paragraphs that attend to one of four types of clarifications: (1) Student Experiences; (2) Examples; (3) Boundaries; and (4) Connection to Math Practices.

- Remix of:
- OREGON MATH STANDARDS (2021): [TEMPLATE]
- Subject:
- Mathematics
- Level:
- High School
- Material Type:
- Teaching/Learning Strategy
- Author:
- Mark Freed
- Date Added:
- 07/10/2023

- License:
- Creative Commons Attribution
- Language:
- English

## Standards

Learning Domain: Algebra: Creating Equations

Standard: Create equations and inequalities in one variable and use them to solve problems. Include equations arising from linear and quadratic functions, and simple rational and exponential functions.*

Degree of Alignment: Not Rated (0 users)

Learning Domain: Algebra: Creating Equations

Standard: Represent constraints by equations or inequalities, and by systems of equations and/or inequalities, and interpret solutions as viable or non-viable options in a modeling context. For example, represent inequalities describing nutritional and cost constraints on combinations of different foods.*

Degree of Alignment: Not Rated (0 users)

Learning Domain: Algebra: Creating Equations

Standard: Rearrange formulas to highlight a quantity of interest, using the same reasoning as in solving equations. For example, rearrange Ohm's law V = IR to highlight resistance R.*

Degree of Alignment: Not Rated (0 users)

Learning Domain: Algebra: Reasoning with Equations and Inequalities

Standard: Explain each step in solving a simple equation as following from the equality of numbers asserted at the previous step, starting from the assumption that the original equation has a solution. Construct a viable argument to justify a solution method.

Degree of Alignment: Not Rated (0 users)

Learning Domain: Algebra: Reasoning with Equations and Inequalities

Standard: Solve linear equations and inequalities in one variable, including equations with coefficients represented by letters.

Degree of Alignment: Not Rated (0 users)

Learning Domain: Algebra: Reasoning with Equations and Inequalities

Standard: Solve systems of linear equations exactly and approximately (e.g., with graphs), focusing on pairs of linear equations in two variables.

Degree of Alignment: Not Rated (0 users)

Learning Domain: Algebra: Reasoning with Equations and Inequalities

Standard: Understand that the graph of an equation in two variables is the set of all its solutions plotted in the coordinate plane, often forming a curve (which could be a line).

Degree of Alignment: Not Rated (0 users)

Learning Domain: Algebra: Reasoning with Equations and Inequalities

Standard: Explain why the x-coordinates of the points where the graphs of the equations y = f(x) and y = g(x) intersect are the solutions of the equation f(x) = g(x); find the solutions approximately, e.g., using technology to graph the functions, make tables of values, or find successive approximations. Include cases where f(x) and/or g(x) are linear, polynomial, rational, absolute value, exponential, and logarithmic functions.*

Degree of Alignment: Not Rated (0 users)

Learning Domain: Algebra: Reasoning with Equations and Inequalities

Standard: Graph the solutions to a linear inequality in two variables as a half-plane (excluding the boundary in the case of a strict inequality), and graph the solution set to a system of linear inequalities in two variables as the intersection of the corresponding half-planes.

Degree of Alignment: Not Rated (0 users)

Learning Domain: Algebra: Seeing Structure in Expressions

Standard: Choose and produce an equivalent form of an expression to reveal and explain properties of the quantity represented by the expression.

Degree of Alignment: Not Rated (0 users)

Cluster: Interpret the structure of expressions.

Standard: Interpret expressions that represent a quantity in terms of its context.*

Degree of Alignment: Not Rated (0 users)

Cluster: Write expressions in equivalent forms to solve problems

Standard: Choose and produce an equivalent form of an expression to reveal and explain properties of the quantity represented by the expression.

Degree of Alignment: Not Rated (0 users)

Cluster: Create equations that describe numbers or relationship

Standard: Create equations and inequalities in one variable and use them to solve problems. Include equations arising from linear and quadratic functions, and simple rational and exponential functions.*

Degree of Alignment: Not Rated (0 users)

Cluster: Create equations that describe numbers or relationship

Standard: Create equations that describe numbers or relationship. Create equations in two or more variables to represent relationships between quantities; graph equations on coordinate axes with labels and scales.*

Degree of Alignment: Not Rated (0 users)

Cluster: Create equations that describe numbers or relationship

Standard: Represent constraints by equations or inequalities, and by systems of equations and/or inequalities, and interpret solutions as viable or non-viable options in a modeling context. For example, represent inequalities describing nutritional and cost constraints on combinations of different foods.*

Degree of Alignment: Not Rated (0 users)

Cluster: Create equations that describe numbers or relationship

Standard: Rearrange formulas to highlight a quantity of interest, using the same reasoning as in solving equations. For example, rearrange Ohm’s law V = IR to highlight resistance R.*

Degree of Alignment: Not Rated (0 users)

Cluster: Understand solving equations as a process of reasoning and explain the reasoning

Standard: Explain each step in solving a simple equation as following from the equality of numbers asserted at the previous step, starting from the assumption that the original equation has a solution. Construct a viable argument to justify a solution method.

Degree of Alignment: Not Rated (0 users)

Cluster: Solve equations and inequalities in one variable

Standard: Solve linear equations and inequalities in one variable, including equations with coefficients represented by letters.

Degree of Alignment: Not Rated (0 users)

Cluster: Solve systems of equations

Standard: Solve systems of linear equations exactly and approximately (e.g., with graphs), focusing on pairs of linear equations in two variables.

Degree of Alignment: Not Rated (0 users)

Cluster: Represent and solve equations and inequalities graphically

Standard: Understand that the graph of an equation in two variables is the set of all its solutions plotted in the coordinate plane, often forming a curve (which could be a line).

Degree of Alignment: Not Rated (0 users)

Cluster: Represent and solve equations and inequalities graphically

Standard: Explain why the x-coordinates of the points where the graphs of the equations y = f(x) and y = g(x) intersect are the solutions of the equation f(x) = g(x); find the solutions approximately, e.g., using technology to graph the functions, make tables of values, or find successive approximations. Include cases where f(x) and/or g(x) are linear, polynomial, rational, absolute value, exponential, and logarithmic functions.*

Degree of Alignment: Not Rated (0 users)

Cluster: Represent and solve equations and inequalities graphically

Standard: Graph the solutions to a linear inequality in two variables as a half-plane (excluding the boundary in the case of a strict inequality), and graph the solution set to a system of linear inequalities in two variables as the intersection of the corresponding half-planes.

Degree of Alignment: Not Rated (0 users)

## Evaluations

No evaluations yet.

## Comments