Updating search results...

Search Resources

15 Results

View
Selected filters:
  • MCCRS.Math.Content.HSA-REI.D.10 - Understand that the graph of an equation in two variables is the set o...
  • MCCRS.Math.Content.HSA-REI.D.10 - Understand that the graph of an equation in two variables is the set o...
A-REI Collinear points
Unrestricted Use
CC BY
Rating
0.0 stars

This is a task from the Illustrative Mathematics website that is one part of a complete illustration of the standard to which it is aligned. Each task has at least one solution and some commentary that addresses important asects of the task and its potential use. Here are the first few lines of the commentary for this task: Consider three points in the plane, $P=(-4, 0), Q=(-1, 12)$ and $R=(4, 32)$. Find the equation of the line through $P$ and $Q$. Use your equation in (a...

Subject:
Mathematics
Material Type:
Activity/Lab
Provider:
Illustrative Mathematics
Provider Set:
Illustrative Mathematics
Author:
Illustrative Mathematics
Date Added:
09/09/2013
Algebra I/II Lessons — Skew The Script
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

A collection of relevant lessons to supplement your units in Algebra I/II. Mix these lessons into your course to show students the algebraic reasoning behind social issues, public health, the environment, business, sports, and more.

Subject:
Mathematics
Material Type:
Activity/Lab
Lesson
Lesson Plan
Author:
Skew The Script
Date Added:
01/31/2023
All about Linear Programming
Read the Fine Print
Educational Use
Rating
0.0 stars

Students learn about linear programming (also called linear optimization) to solve engineering design problems. As they work through a word problem as a class, they learn about the ideas of constraints, feasibility and optimization related to graphing linear equalities. Then they apply this information to solve two practice engineering design problems related to optimizing materials and cost by graphing inequalities, determining coordinates and equations from their graphs, and solving their equations. It is suggested that students conduct the associated activity, Optimizing Pencils in a Tray, before this lesson, although either order is acceptable.

Subject:
Algebra
Geometry
Mathematics
Material Type:
Lesson
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Andi Vicksman
Maia Vadeen
Malinda Zarske
Nathan Coyle
Russell Anderson
Ryan Sullivan
Date Added:
12/16/2016
Defining Regions Using Inequalities
Only Sharing Permitted
CC BY-NC-ND
Rating
0.0 stars

This lesson unit is intended to help teachers assess how well students are able to use linear inequalities to create a set of solutions. In particular, the lesson will help teachers identify and assist students who have difficulties in: representing a constraint by shading the correct side of the inequality line; and understanding how combining inequalities affects a solution space.

Subject:
Mathematics
Material Type:
Assessment
Lesson Plan
Provider:
Shell Center for Mathematical Education
Provider Set:
Mathematics Assessment Project (MAP)
Date Added:
04/26/2013
Describing Velocity
Unrestricted Use
CC BY
Rating
0.0 stars

Learn to connect position-time and velocity-time graphs. Explore velocity using an animated car icon connected to either a position-time or a velocity-time graph, or both. Then investigate other motion graphs.

Subject:
Applied Science
Mathematics
Physical Science
Technology
Material Type:
Activity/Lab
Provider:
Concord Consortium
Provider Set:
Concord Consortium
Author:
Concord Consortium
Date Added:
04/25/2012
Ding! Going Up? Elevators and Engineering
Read the Fine Print
Educational Use
Rating
0.0 stars

Students create model elevator carriages and calibrate them, similar to the work of design and quality control engineers. Students use measurements from rotary encoders to recreate the task of calibrating elevators for a high-rise building. They translate the rotations from an encoder to correspond to the heights of different floors in a hypothetical multi-story building. Students also determine the accuracy of their model elevators in getting passengers to their correct destinations.

Subject:
Applied Science
Architecture and Design
Engineering
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Chris Leung
Paul Phamduy
Date Added:
09/18/2014
Gas Laws
Read the Fine Print
Rating
0.0 stars

In this activity, students study gas laws at a molecular level. They vary the volume of a container at constant temperature to see how pressure changes (Boyle's Law), change the temperature of a container at constant pressure to see how the volume changes with temperature (Charles’s Law), and experiment with heating a gas in a closed container to discover how pressure changes with temperature (Gay Lussac's Law). They also discover the relationship between the number of gas molecules and gas volume (Avogadro's Law). Finally, students use their knowledge of gas laws to model a heated soda can collapsing as it is plunged into ice water.

Subject:
Chemistry
Education
Geoscience
Physical Science
Physics
Material Type:
Data Set
Diagram/Illustration
Interactive
Lecture Notes
Provider:
Concord Consortium
Provider Set:
Concord Consortium Collection
Author:
The Concord Consortium
Date Added:
12/11/2011
OREGON MATH STANDARDS (2021): [HS.AEE]
Unrestricted Use
CC BY
Rating
0.0 stars

The intent of clarifying statements is to provide additional guidance for educators to communicate the intent of the standard to support the future development of curricular resources and assessments aligned to the 2021 math standards.  Clarifying statements can be in the form of succinct sentences or paragraphs that attend to one of four types of clarifications: (1) Student Experiences; (2) Examples; (3) Boundaries; and (4) Connection to Math Practices.

Subject:
Mathematics
Material Type:
Teaching/Learning Strategy
Author:
Mark Freed
Date Added:
07/10/2023
Optimization Problems: Boomerangs
Only Sharing Permitted
CC BY-NC-ND
Rating
0.0 stars

This lesson unit is intended to help teachers assess how well students are able to: interpret a situation and represent the constraints and variables mathematically; select appropriate mathematical methods to use; explore the effects of systematically varying the constraints; interpret and evaluate the data generated and identify the optimum case, checking it for confirmation; and communicate their reasoning clearly.

Subject:
Mathematics
Measurement and Data
Material Type:
Assessment
Lesson Plan
Provider:
Shell Center for Mathematical Education
Provider Set:
Mathematics Assessment Project (MAP)
Date Added:
04/26/2013
Preconditioning Balloons
Read the Fine Print
Educational Use
Rating
0.0 stars

Students use balloons (a polymer) to explore preconditioning a viscoelastic material behavior that is important to understand when designing biomedical devices. They improve their understanding of preconditioning by measuring the force needed to stretch a balloon to the same displacement multiple times. Students gain experience in data collection and graph interpretation.

Subject:
Applied Science
Engineering
Physical Science
Physics
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Brandi N. Briggs
Marissa Forbes
Date Added:
09/18/2014
Push and Support Cards: A Bridge to Advanced Mathematics for the Multi-Level Adult Education Classroom Curriculum Guide
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

Adult education classrooms are commonly comprised of learners who have widely disparate levels of mathematical problem-solving skills. This is true regardless of what level a student may be assessed at when entering an adult education program or what level class they are placed in. Providing students with differentiated instruction in the form of Push and Support cards is one way to level this imbalance, keeping all students engaged in one high-cognitive task that supports and encourages learners who are stuck, while at the same time, providing extensions for students who move through the initial phase of the task quickly. Thus, all
students are continually moving forward during the activity, and when the task ends, all students have made progress in their journey towards developing conceptual understanding of mathematical ideas along with a productive disposition, belief in one’s own ability to successfully engage with mathematics.

Subject:
Mathematics
Material Type:
Lesson Plan
Module
Teaching/Learning Strategy
Date Added:
05/23/2018
A Shot Under Pressure
Read the Fine Print
Educational Use
Rating
0.0 stars

Students use their understanding of projectile physics and fluid dynamics to find the water pressure in water guns. By measuring the range of the water jets, they are able to calculate the theoretical pressure. Students create graphs to analyze how the predicted pressure relates to the number of times they pump the water gun before shooting.

Subject:
Applied Science
Engineering
Physical Science
Physics
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Denise W. Carlson
James Prager
Karen King
Date Added:
09/18/2014
The Temperature Effect
Read the Fine Print
Educational Use
Rating
0.0 stars

Students explore how the efficiency of a solar photovoltaic (PV) panel is affected by the ambient temperature. They learn how engineers predict the power output of a PV panel at different temperatures and examine some real-world engineering applications used to control the temperature of PV panels.

Subject:
Applied Science
Career and Technical Education
Electronic Technology
Engineering
Material Type:
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Abigail Watrous
Eszter Horanyi
Jack Baum
Malinda Schaefer Zarske
Stephen Johnson
William Surles
Date Added:
09/18/2014