## Description

- Overview:
- Modeling Our World with Mathematics Unit 4: Finances for Life Topic 1 - Introduction to Finance

- Subject:
- Mathematics
- Level:
- High School
- Material Type:
- Module
- Author:
- Hannah Hynes-Petty, Washington OSPI OER Project, Washington OSPI Mathematics Department, Arlene Crum
- Date Added:
- 10/12/2020

- License:
- Creative Commons Attribution Non-Commercial
- Language:
- English
- Media Format:
- Downloadable docs

## Reviewers

No reviewers yet.

a Reviewer.

## Standards

Learning Domain: Spending and Saving

Standard: Specify how monetary and non-monetary assets can contribute to net worth

Degree of Alignment: Not Rated (0 users)

Learning Domain: Algebra: Creating Equations

Standard: Create equations that describe numbers or relationship. Create equations in two or more variables to represent relationships between quantities; graph equations on coordinate axes with labels and scales.*

Degree of Alignment: Not Rated (0 users)

Learning Domain: Mathematical Practices

Standard: Make sense of problems and persevere in solving them. Mathematically proficient students start by explaining to themselves the meaning of a problem and looking for entry points to its solution. They analyze givens, constraints, relationships, and goals. They make conjectures about the form and meaning of the solution and plan a solution pathway rather than simply jumping into a solution attempt. They consider analogous problems, and try special cases and simpler forms of the original problem in order to gain insight into its solution. They monitor and evaluate their progress and change course if necessary. Older students might, depending on the context of the problem, transform algebraic expressions or change the viewing window on their graphing calculator to get the information they need. Mathematically proficient students can explain correspondences between equations, verbal descriptions, tables, and graphs or draw diagrams of important features and relationships, graph data, and search for regularity or trends. Younger students might rely on using concrete objects or pictures to help conceptualize and solve a problem. Mathematically proficient students check their answers to problems using a different method, and they continually ask themselves, "Does this make sense?"ť They can understand the approaches of others to solving complex problems and identify correspondences between different approaches.

Degree of Alignment: Not Rated (0 users)

Cluster: Interpret the structure of expressions.

Standard: Interpret expressions that represent a quantity in terms of its context.*

Degree of Alignment: Not Rated (0 users)

Cluster: Write expressions in equivalent forms to solve problems

Standard: Choose and produce an equivalent form of an expression to reveal and explain properties of the quantity represented by the expression.

Degree of Alignment: Not Rated (0 users)

Cluster: Create equations that describe numbers or relationship

Standard: Create equations that describe numbers or relationship. Create equations in two or more variables to represent relationships between quantities; graph equations on coordinate axes with labels and scales.*

Degree of Alignment: Not Rated (0 users)

Cluster: Create equations that describe numbers or relationship

Standard: Represent constraints by equations or inequalities, and by systems of equations and/or inequalities, and interpret solutions as viable or non-viable options in a modeling context. For example, represent inequalities describing nutritional and cost constraints on combinations of different foods.*

Degree of Alignment: Not Rated (0 users)

Cluster: Understand the concept of a function and use function notation.

Standard: Understand that a function from one set (called the domain) to another set (called the range) assigns to each element of the domain exactly one element of the range. If f is a function and x is an element of its domain, then f(x) denotes the output of f corresponding to the input x. The graph of f is the graph of the equation y = f(x).

Degree of Alignment: Not Rated (0 users)

Cluster: Interpret functions that arise in applications in terms of the context

Standard: For a function that models a relationship between two quantities, interpret key features of graphs and tables in terms of the quantities, and sketch graphs showing key features given a verbal description of the relationship. Key features include: intercepts; intervals where the function is increasing, decreasing, positive, or negative; relative maximums and minimums; symmetries; end behavior; and periodicity.*

Degree of Alignment: Not Rated (0 users)

Cluster: Analyze functions using different representations

Standard: Graph functions expressed symbolically and show key features of the graph, by hand in simple cases and using technology for more complicated cases.*

Degree of Alignment: Not Rated (0 users)

Cluster: Build a function that models a relationship between two quantities

Standard: Write a function that describes a relationship between two quantities.*

Degree of Alignment: Not Rated (0 users)

Cluster: Construct and compare linear, quadratic, and exponential models and solve problems

Standard: Distinguish between situations that can be modeled with linear functions and with exponential functions.*

Degree of Alignment: Not Rated (0 users)

Cluster: Construct and compare linear, quadratic, and exponential models and solve problems

Standard: Construct and compare linear, quadratic, and exponential models and solve problems. Construct linear and exponential functions, including arithmetic and geometric sequences, given a graph, a description of a relationship, or two input-output pairs (include reading these from a table).*

Degree of Alignment: Not Rated (0 users)

Cluster: Construct and compare linear, quadratic, and exponential models and solve problems

Standard: Observe using graphs and tables that a quantity increasing exponentially eventually exceeds a quantity increasing linearly, quadratically, or (more generally) as a polynomial function.*

Degree of Alignment: Not Rated (0 users)

Cluster: Interpret expressions for functions in terms of the situation they model

Standard: Interpret the parameters in a linear or exponential function in terms of a context.*

Degree of Alignment: Not Rated (0 users)

Cluster: Summarize, represent, and interpret data on a single count or measurement variable

Standard: Represent data with plots on the real number line (dot plots, histograms, and box plots).*

Degree of Alignment: Not Rated (0 users)

Cluster: Summarize, represent, and interpret data on a single count or measurement variable

Standard: Use statistics appropriate to the shape of the data distribution to compare center (median, mean) and spread (interquartile range, standard deviation) of two or more different data sets.*

Degree of Alignment: Not Rated (0 users)

Cluster: Summarize, represent, and interpret data on a single count or measurement variable

Standard: Interpret differences in shape, center, and spread in the context of the data sets, accounting for possible effects of extreme data points (outliers).*

Degree of Alignment: Not Rated (0 users)

# Common Core State Standards Math

Cluster: Mathematical practices

Standard: Make sense of problems and persevere in solving them. Mathematically proficient students start by explaining to themselves the meaning of a problem and looking for entry points to its solution. They analyze givens, constraints, relationships, and goals. They make conjectures about the form and meaning of the solution and plan a solution pathway rather than simply jumping into a solution attempt. They consider analogous problems, and try special cases and simpler forms of the original problem in order to gain insight into its solution. They monitor and evaluate their progress and change course if necessary. Older students might, depending on the context of the problem, transform algebraic expressions or change the viewing window on their graphing calculator to get the information they need. Mathematically proficient students can explain correspondences between equations, verbal descriptions, tables, and graphs or draw diagrams of important features and relationships, graph data, and search for regularity or trends. Younger students might rely on using concrete objects or pictures to help conceptualize and solve a problem. Mathematically proficient students check their answers to problems using a different method, and they continually ask themselves, “Does this make sense?” They can understand the approaches of others to solving complex problems and identify correspondences between different approaches.

Degree of Alignment: Not Rated (0 users)

## Evaluations

No evaluations yet.

# Tags (6)

- Modeling Our World With Mathematics
- Washington Office of Superintendent of Public Instruction
- FEPPP
- Financial Education Public Private Partnership
- wa-math
- wa-fels

## Comments