Updating search results...

Elementary Science

26 affiliated resources

Search Resources

View
Selected filters:
Part 2: To ROV or not to ROV, that is the question
Conditional Remix & Share Permitted
CC BY-NC
Rating
0.0 stars

Second part to the C2 Superlesson for ROV's from Kim Stokes and Ben Wells, Siuslaw Elementary School.

Subject:
Applied Science
Engineering
Material Type:
Activity/Lab
Assessment
Diagram/Illustration
Lesson Plan
Provider:
Lane County STEM Hub
Provider Set:
Content in Context SuperLessons
Author:
Ben Wells
Kim Stokes
Date Added:
06/21/2017
Sand, Wind, and Your School Lunch
Conditional Remix & Share Permitted
CC BY-NC
Rating
0.0 stars

Last year the Siuslaw 97J School District changed our food service operation from a national supplier (Chartwell’s) to in-house food service. Our Food Service Manager instituted an organic philosophy and wanted to source local produce. Utilizing our school garden program we now help supply fresh produce for our Siuslaw Elementary School cafeteria. Crop production is stronger in the 4/5 wing because of wind protection from the building. Florence experiences high winds and we are located close to the beach so we have constant sand blowing into our crops. The K-3 garden beds do not have the same protection as the 4/5 beds, and as a result have a lower yield. Our goal is to have students design and engineer wind barriers for these beds and then present the best solutions to our school board so that we can get funding to implement our ideas. This project can be used in any school with a garden by using preexisting barriers on a the school property. The unique environment of the school would dictate the lessons required to be adapted to fit the environmental needs of the community. If the school is lacking a garden, the students can focus on an at home garden project.

Subject:
Applied Science
Engineering
Environmental Science
Material Type:
Activity/Lab
Provider:
Lane County STEM Hub
Provider Set:
Content in Context SuperLessons
Author:
Gina Halpin
Greg Jorgenson
Date Added:
06/19/2017
Sort It Out
Conditional Remix & Share Permitted
CC BY-NC
Rating
0.0 stars

In this project, students will use knowledge of electricity and electromagnetism to collaboratively design and test a model of a magnetic recycling sorter. They will evaluate the performance of their models and propose further modifications based on the output of their magnetic device measured in mT using a Vernier probe. They will also physically test their magnets on a model of a conveyor belt containing recyclable items. Students will track their data from both tests, with the ultimate goal of creating the strongest and most effective magnet with given materials. Finally, students will present their findings and proposed final design to peers and community partners involved in the recycling industry. The entire process takes about 6 weeks. The unit is a great fit for standards within energy and engineering & design.

Subject:
Physical Science
Material Type:
Activity/Lab
Assessment
Diagram/Illustration
Homework/Assignment
Lesson Plan
Reading
Simulation
Student Guide
Teaching/Learning Strategy
Provider:
Lane County STEM Hub
Provider Set:
Content in Context SuperLessons
Author:
Autumn Erickson
Rick Haas
Sara Burgin
Date Added:
08/31/2016
To ROV or not to ROV, that is the question...
Conditional Remix & Share Permitted
CC BY-NC
Rating
0.0 stars

Siuslaw Elementary students designed, engineered and constructed functioning ROV's to explore ways to solve underwater challenges. Engineering exercises included functionality requirements, buoyancy and floatation, electronics, thrust and maneuverability.

Subject:
Applied Science
Engineering
Environmental Science
Material Type:
Activity/Lab
Interactive
Lesson Plan
Provider:
Lane County STEM Hub
Provider Set:
Content in Context SuperLessons
Author:
Ben Wells
Kimberly Stokes
Date Added:
06/21/2017
Water, A Liquid
Read the Fine Print
Rating
0.0 stars

This review is on the first segment of the Grade 5 curriculum of "The Inquiry Project: Seeing the World Through the Scientists' Eyes." Water, A Liquid is a series of 5 investigations about water. Students use readily available materials such as water, sand and gravel to deepen their understanding of weight. Having a conceptual understanding of weight is important because students will use it when they begin exploring matter that is too small to be seen. The students are introduced to the study of matter by looking at images of ships sitting in a dry seabed in the Aral Sea. This introductory investigation will hook students because it is posed as a mystery and has a real life connection. Within this series of 5 investigations students will: -practice measurement using standard units -collect and record data -read a letter from an engineer -compare the weight of sand and water -use a digital scale -learn vocabulary -review volume, estimation -engage in discourse -reflect on the weight of small bits of matter -summarize evidence -collaborate -develop strategies -observe -transform (by crushing). The Inquiry Project is a quality curriculum developed pre-NGSS but closely aligned with The Framework of K-12 Science Education. This curriculum "links the three dimensions together" through the qualitative and quantitative measurement of water and sand using standard units and student observations. Each lesson is "designed to link with the previous lesson" as students build toward the capacity to be able to "make observations and measurements to identify materials based on their properties" in the context of the dry sea phenomena.

Subject:
Physical Science
Physics
Material Type:
Activity/Lab
Provider:
National Science Teachers Association (NSTA)
Provider Set:
NGSS@NSTA
Date Added:
10/12/2015
Weather you like it or not!
Conditional Remix & Share Permitted
CC BY-NC
Rating
0.0 stars

Learning Goals/Outcomes/Objectives:
Observable features of the student performance by the end of the grade: 1). Obtaining information: Students use books and other reliable media to gather information about: i. Climates in different regions of the world (e.g., equatorial, polar, coastal, mid-continental). ii. Variations in climates within different regions of the world (e.g., variations could include an area’s average temperatures and precipitation during various months over several years or an area’s average rainfall and temperatures during the rainy season over several years). 2 Evaluating information a Student's combine obtained information to provide evidence about the climate pattern in a region that can be used to make predictions about typical weather conditions in that region. 3 Communicating information a Students use the information they obtained and combined to describe*: i. Climates in different regions of the world. ii. Examples of how patterns in climate could be used to predict typical weather conditions. iii. That climate can vary over years in different regions of the world.

Subject:
Atmospheric Science
Physical Science
Material Type:
Activity/Lab
Provider:
Lane County STEM Hub
Provider Set:
Content in Context SuperLessons
Date Added:
06/20/2017