Updating search results...

TeachEngineering NGSS Aligned Records

1159 affiliated resources

Search Resources

View
Selected filters:
Exploring Solar Power
Read the Fine Print
Educational Use
Rating
0.0 stars

Students explore the methods engineers have devised for harnessing sunlight to generate power. First, they investigate heat transfer and heat storage through the construction, testing and use of a solar oven. With a lesson focused on photovoltaic cells, students learn the concepts of energy conversion, conservation of energy, current and voltage. By constructing model solar powered cars, students see these conceptual ideas manifested in modern technology. Furthermore, the solar car project provides opportunities to explore a number of other topics, such as gear ratios and simple mechanics. Both of these design and construction projects are examples of engineering design.

Subject:
Applied Science
Engineering
Physical Science
Physics
Material Type:
Full Course
Unit of Study
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Lauren Powell
Date Added:
09/18/2014
Exploring the Electromagnetic Spectrum
Read the Fine Print
Educational Use
Rating
0.0 stars

Students learn the basics of the electromagnetic spectrum and how various types of electromagnetic waves are related in terms of wavelength and energy. In addition, they are introduced to the various types of waves that make up the electromagnetic spectrum including, radio waves, ultraviolet waves, visible light and infrared waves. These topics help inform students before they turn to designing solutions to an overarching engineering challenge question.

Subject:
Applied Science
Engineering
Physical Science
Physics
Material Type:
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Courtney Faber
Ellen Zielinski
Date Added:
09/18/2014
Exploring the Lotus Effect
Read the Fine Print
Educational Use
Rating
0.0 stars

Students test and observe the "self-cleaning" lotus effect using a lotus leaf and cloth treated with a synthetic lotus-like superhydrophobic coating. They also observe the Wenzel and Cassie Baxter wetting states by creating and manipulating condensation droplets on the leaf surface. They consider the real-life engineering applications for these amazing water-repellent and self-cleaning properties.

Subject:
Applied Science
Engineering
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Chuan-Hua Chen
Date Added:
09/18/2014
Extinction Prevention via Engineering
Read the Fine Print
Educational Use
Rating
0.0 stars

Species extinction is happening at an alarming rate according to scientists. In this lesson, students are asked to consider why extinction is a problem that we should concern us. They are taught that destruction of habitat is the main reason many species are threatened. The lesson explores ways that engineers can help save endangered species.

Subject:
Applied Science
Ecology
Engineering
Life Science
Material Type:
Activity/Lab
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Janet Yowell
Karen King
Michael J. Bendewald
Date Added:
09/18/2014
Factors Affecting Friction
Read the Fine Print
Educational Use
Rating
0.0 stars

Based on what they have already learned about friction, students formulate hypotheses concerning the effects of weight and contact area on the amount of friction between two surfaces. In the Associated Activities (Does Weight Matter? and Does Area Matter?), students design and conduct simple experiments to test their hypotheses, using procedures similar to those used in the previous lesson (Discovering Friction). An analysis of their data will reveal the importance of weight to normal friction (the friction that occurs as a result of surface roughness) and the importance of surface area to the friction that occurs between smooth surfaces due to molecular attraction. Based on their data, students will also be able to calculate coefficients of friction for the materials tested, and compare these to published values for various materials.

Subject:
Applied Science
Engineering
Physical Science
Physics
Material Type:
Activity/Lab
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Mary R. Hebrank
Date Added:
09/18/2014
Falling Water
Read the Fine Print
Educational Use
Rating
0.0 stars

Students drop water from different heights to demonstrate the conversion of water's potential energy to kinetic energy. They see how varying the height from which water is dropped affects the splash size. They follow good experiment protocol, take measurements, calculate averages and graph results. In seeing how falling water can be used to do work, they also learn how this energy transformation figures into the engineering design and construction of hydroelectric power plants, dams and reservoirs.

Subject:
Applied Science
Engineering
Material Type:
Activity/Lab
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Denise Carlson
Malinda Schaefer Zarske
Natalie Mach
Sabre Duren
Xochitl Zamora-Thompson
Date Added:
09/26/2008
Fancy Feet
Read the Fine Print
Educational Use
Rating
0.0 stars

Students use the engineering design process to solve a real-world problem shoe engineering! Working in small teams, they design, build and test a pair of wearable platform or high-heeled shoes, taking into consideration the stress and strain forces that it will encounter from the shoe wearer. They conclude the activity with a "walk-off" to test the shoe designs and discuss the design process.

Subject:
Applied Science
Engineering
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Denise W. Carlson
Lauren Cooper
Malinda Schaefer Zarske
Date Added:
10/14/2015
Fantastic Fossils
Read the Fine Print
Educational Use
Rating
0.0 stars

Students learn about fossils what they are, how they are formed, and why scientists and engineers care about them.

Subject:
Applied Science
Archaeology
Engineering
Social Science
Material Type:
Activity/Lab
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Abigail Watrous
Denise W. Carlson
Malinda Schaefer Zarske
Megan Podlogar
Date Added:
09/18/2014
Fascinating Friction!
Read the Fine Print
Educational Use
Rating
0.0 stars

Students use wood, wax paper and oil to investigate the importance of lubrication between materials and to understand the concept of friction. Using wax paper and oil placed between pieces of wood, the function of lubricants between materials is illustrated. Students extend their understanding of friction to bones and joints in the skeletal system and become aware of what engineers can do to help reduce friction in the human body as well as in machines.

Subject:
Applied Science
Engineering
Physical Science
Physics
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Abigail Watrous
Beth Myers
Denali Lander
Janet Yowell
Jessica Todd
Malinda Schaefer Zarske
Sara Born
Date Added:
10/14/2015
Faulty Movement
Read the Fine Print
Educational Use
Rating
0.0 stars

In this activity, students are introduced to faults. They will learn about different kinds of faults and understand their relationship to earthquakes. The students will build cardboard models of the three different types of faults as they learn about how earthquakes are formed.

Subject:
Applied Science
Engineering
Geology
Physical Science
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Janet Yowell
Jessica Todd
Malinda Schaefer Zarske
Melissa Straten
Date Added:
10/14/2015
Fence That Farmland!
Read the Fine Print
Educational Use
Rating
0.0 stars

Students develop and solidify their understanding of the concept of "perimeter" as they engage in a portion of the civil engineering task of land surveying. Specifically, they measure and calculate the perimeter of a fenced in area of "farmland," and see that this length is equivalent to the minimum required length of a fence to enclose it. Doing this for variously shaped areas confirms that the perimeter is the minimal length of fence required to enclose those shapes. Then students use the technology of a LEGO MINDSTORMS(TM) NXT robot to automate this task. After measuring the perimeter (and thus required fence length) of the "farmland," students see the NXT robot travel around this length, just as a surveyor might travel around an area during the course of surveying land or measuring for fence materials. While practicing their problem solving and measurement skills, students learn and reinforce their scientific and geometric vocabulary.

Subject:
Applied Science
Engineering
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Ursula Koniges
Date Added:
09/18/2014
Fighting Back! (Lesson)
Read the Fine Print
Educational Use
Rating
0.0 stars

This lesson describes the major components and functions of the immune system and the role of engineers in keeping the body healthy (e.g., vaccinations and antibiotics, among other things). This lesson also discusses how an astronaut's immune system is suppressed during spaceflight due to stress and other environmental factors.

Subject:
Anatomy/Physiology
Applied Science
Engineering
Life Science
Material Type:
Activity/Lab
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Denali Lander
Janet Yowell
Malinda Schaefer Zarske
Teresa Ellis
Date Added:
09/18/2014
Filtering: Extracting What We Want from What We Have
Read the Fine Print
Educational Use
Rating
0.0 stars

Filtering is the process of removing or separating the unwanted part of a mixture. In signal processing, filtering is specifically used to remove or extract part of a signal, and this can be accomplished using an analog circuit or a digital device (such as a computer). In this lesson, students learn the impact filtering can have on different types of signals, the concepts of frequency and spectrum, and the connections these topics have to real-world signals such as musical signals. Students also learn the roles that these concepts play in designing different types of filters. The lesson content prepares students for the associated activity in which they use an online demo and a variety of filters to identify the message in a distress signal heavily corrupted by noise.

Subject:
Applied Science
Engineering
Material Type:
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Dehui Yang
Kyle R. Feaster
Michael B. Wakin
Date Added:
10/14/2015
Filtering: Removing Noise from a Distress Signal
Read the Fine Print
Educational Use
Rating
0.0 stars

Students learn the basic principles of filtering as well as how to apply digital filters to extract part of an audio signal by using an interactive online demo website. They apply this knowledge in order to isolate a voice recording from a heavily noise-contaminated sound wave. After completing the associated lesson, expect students to be able to attempt (and many successfully finish) this activity with minimal help from the instructor.

Subject:
Applied Science
Career and Technical Education
Electronic Technology
Engineering
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Ayoade Adekola
Chris Light
Connor McKay
Dehui Yang
Kyle R. Feaster
Michael B. Wakin
Date Added:
10/14/2015
Find Your Own Direction
Read the Fine Print
Educational Use
Rating
0.0 stars

Students create their own simple compasses using thread, needle and water in a bowl and learn how it works.

Subject:
Applied Science
Education
Engineering
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Abby Watrous
Janet Yowell
Jay Shah
Jeff White
Malinda Schaefer Zarske
Matt Lippis
Penny Axelrad
Date Added:
10/14/2015
Fish-Friendly Engineering
Read the Fine Print
Educational Use
Rating
0.0 stars

Students further their understanding of the salmon life cycle and the human structures and actions that aid in the migration of fish around hydroelectric dams by playing an animated PowerPoint game involving a fish that must climb a fish ladder to get over a dam. They first brainstorm their own ideas, and then learn about existing ways engineers have made dams "friendlier" to migrating fish, before being quizzed as part of the game.

Subject:
Applied Science
Engineering
Hydrology
Physical Science
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Denise W. Carlson
Jeff Lyng
Kristin Field
Megan Podlogar
Date Added:
09/18/2014
Flame Test: Red, Green, Blue, Violet?
Read the Fine Print
Educational Use
Rating
0.0 stars

To become familiar with the transfer of energy in the form of quantum, students perform flame tests, which is one way chemical engineers identify elements by observing the color emitted when placed in a flame. After calculating and then preparing specific molarity solutions of strontium chloride, copper II chloride and potassium chloride (good practice!), students observe the distinct colors each solution produces when placed in a flame, determine the visible light wavelength, and apply that data to identify the metal in a mystery solution. They also calculate the frequency of energy for the solutions.

Subject:
Applied Science
Engineering
Physical Science
Physics
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Amber Spolarich
Michelle Bell
Date Added:
10/14/2015
Floaters and Sinkers
Read the Fine Print
Educational Use
Rating
0.0 stars

Students are introduced to the important concept of density with a focus is on the more easily understood densities of solids. Students use different methods to determine the densities of solid objects, including water displacement to determine volumes of irregularly-shaped objects. By comparing densities of various solids to the density of water, and by considering the behavior of different solids when placed in water, students conclude that ordinarily, objects with densities greater than water sink, while those with densities less than water float. Then they explore the principle of buoyancy, and through further experimentation arrive at Archimedes' principle that a floating object displaces a mass of water equal to its own mass. Students may be surprised to discover that a floating object displaces more water than a sinking object of the same volume.

Subject:
Applied Science
Engineering
Physical Science
Physics
Material Type:
Full Course
Unit of Study
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Mary R. Hebrank
Date Added:
09/18/2014
Floaters and Sinkers: Lesson
Read the Fine Print
Educational Use
Rating
0.0 stars

This lesson introduces students to the important concept of density. The focus is on the more easily understood densities of solids, but students can also explore the densities of liquids and gases. Students devise methods to determine the densities of solid objects, including the method of water displacement to determine volumes of irregularly-shaped objects. By comparing densities of various solids to the density of water, and by considering the behavior of different solids when placed in water, students conclude that ordinarily, objects with densities greater than water will sink, while those with densities less than water will float. Density is an important material property for engineers to understand.

Subject:
Applied Science
Engineering
Physical Science
Physics
Material Type:
Activity/Lab
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Mary R. Hebrank
Date Added:
09/18/2014
Flood Analysis
Read the Fine Print
Educational Use
Rating
0.0 stars

Students learn how to use and graph real-world stream gage data to create event and annual hydrographs and calculate flood frequency statistics. Using an Excel spreadsheet of real-world event, annual and peak streamflow data, they manipulate the data (converting units, sorting, ranking, plotting), solve problems using equations, and calculate return periods and probabilities. Prompted by worksheet questions, they analyze the runoff data as engineers would. Students learn how hydrographs help engineers make decisions and recommendations to community stakeholders concerning water resources and flooding.

Subject:
Applied Science
Engineering
Hydrology
Physical Science
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Emily Gill
Malinda Schaefer Zarske
Date Added:
09/18/2014