Updating search results...

Next Generation Science Standards Aligned Resources

OER Commons has worked with some of the most trusted and innovative OER science educators out there to bring you resources aligned and evaluated against the Next Generation Science Standards.


Trademark Notice:
"Next Generation Science Standards" and the provided logo  is a registered trademark of WestEd. Neither WestEd nor the lead states and partners that developed the Next Generation Science Standards were involved in the production of this product, and do not endorse it.

2615 affiliated resources

Search Resources

View
Selected filters:
Android Acceleration Application
Read the Fine Print
Educational Use
Rating
0.0 stars

In the first of two sequential lessons, students create mobile apps that collect data from an Android device's accelerometer and then store that data to a database. This lesson provides practice with MIT's App Inventor software and culminates with students writing their own apps for measuring acceleration. In the second lesson, students are given an app for an Android device, which measures acceleration. They investigate acceleration by collecting acceleration vs. time data using the accelerometer of a sliding Android device. Then they use the data to create velocity vs. time graphs and approximate the maximum velocity of the device.

Subject:
Applied Science
Computer Science
Engineering
Material Type:
Full Course
Unit of Study
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Brian Sandall
Scott Burns
Date Added:
09/18/2014
Android Pendulums
Read the Fine Print
Educational Use
Rating
0.0 stars

Students investigate the motion of a simple pendulum through direct observation and data collection using Android® devices. First, student groups create pendulums that hang from the classroom ceiling, using Android smartphones or tablets as the bobs, taking advantage of their built-in accelerometers. With the Android devices loaded with the (provided) AccelDataCapture app, groups explore the periodic motion of the pendulums, changing variables (amplitude, mass, length) to see what happens, by visual observation and via the app-generated graphs. Then teams conduct formal experiments to alter one variable while keeping all other parameters constant, performing numerous trials, identifying independent/dependent variables, collecting data and using the simple pendulum equation. Through these experiments, students investigate how pendulums move and the changing forces they experience, better understanding the relationship between a pendulum's motion and its amplitude, length and mass. They analyze the data, either on paper or by importing into a spreadsheet application. As an extension, students may also develop their own algorithms in a provided App Inventor framework in order to automatically note the time of each period.

Subject:
Applied Science
Engineering
Physical Science
Physics
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Doug Bertelsen
Date Added:
09/18/2014
Angular Velocity: Sweet Wheels
Read the Fine Print
Educational Use
Rating
0.0 stars

Students analyze the relationship between wheel radius, linear velocity and angular velocity by using LEGO(TM) MINDSTORMS(TM) NXT robots. Given various robots with different wheel sizes and fixed motor speeds, they predict which has the fastest linear velocity. Then student teams collect and graph data to analyze the relationships between wheel size and linear velocity and find the angular velocity of the robot given its motor speed. Students explore other ways to increase linear velocity by changing motor speeds, and discuss and evaluate the optimal wheel size and desired linear velocities on vehicles.

Subject:
Applied Science
Engineering
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
James Muldoon
Jigar Jadav
Kelly Brandon
Date Added:
10/14/2015
Animal Diversity -- Out Teach
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

Students will explore the outdoor classroom in pairs looking for evidence of animal life and imagining what types of animals might live in and around the area.

Subject:
Life Science
Material Type:
Lesson Plan
Author:
Out Teach
Date Added:
07/22/2021
Animal Habitat Project
Unrestricted Use
CC BY
Rating
0.0 stars

In this lesson, students will use teacher provided materials to create an animal habitat.  They will work in groups and be assigned a habitat. Each group will need to include plants and animals found in their habitat. Students will present their finished project to the class and each member will give a fact about their habitat. The teacher will assess student understanding based on the models and presentations.

Subject:
Life Science
Zoology
Material Type:
Lesson
Author:
Marianne Player
Date Added:
03/23/2020
Animal Loverss
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

Animal Lovers           Every animals have its own way to communicate with human. Likewise human also loves to human . Many peoples not like the animals and they behave crucial with animals.

Subject:
Applied Science
Material Type:
Case Study
Author:
Vivek Netam
Date Added:
05/01/2020
Animal Studies
Conditional Remix & Share Permitted
CC BY-NC
Rating
0.0 stars

In this unit of study students learn how an animal's body structure and behavior help it survive in its habitat. This unit integrates nine STEM attributes and was developed as part of the South Metro-Salem STEM Partnership's Teacher Leadership Team. Any instructional materials are included within this unit of study.

Subject:
Life Science
Mathematics
Material Type:
Unit of Study
Provider:
South Metro-Salem STEM Partnership
Author:
Susan Ford
Date Added:
05/25/2015
Animals and Engineering
Read the Fine Print
Educational Use
Rating
0.0 stars

Students are introduced to the classification of animals and animal interactions. Students also learn why engineers need to know about animals and how they use that knowledge to design technologies that help other animals and/or humans. This lesson is part of a series of six lessons in which students use their growing understanding of various environments and the engineering design process, to design and create their own model biodome ecosystems.

Subject:
Applied Science
Ecology
Engineering
Life Science
Material Type:
Activity/Lab
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Denise Carlson
Katherine Beggs
Malinda Schaefer Zarske
Date Added:
09/18/2014
Antibiotic Resistance
Conditional Remix & Share Permitted
CC BY-NC
Rating
0.0 stars

Antibiotics save people’s lives...and make bacteria stronger and more likely to kill us.  What is the best practice to balance these conflicting issues? In this problem-based learning module, the students will be evaluating real-life medical situations in conjunction with actual staff at those institutions and offering action plans to be ‘implemented’ there.  In order to accomplish this, the science unit will be interlocking with social studies and a language arts unit that will have them identifying target audiences and sculpting a way to present their findings.  This unit has the potential to be a full problem-based unit as well as highly interdisciplinary--it’s connected to full units in social studies and language arts which stand alone but can be fully integrated if desired.

Subject:
Life Science
Material Type:
Lesson Plan
Author:
Blended Learning Teacher Practice Network
Date Added:
11/21/2017
Antiobiotic Resistance
Read the Fine Print
Rating
0.0 stars

In the explorable explanation players can learn how antibiotic resistance happens. They can interact with bacteria in this simulation to learn how when living things reproduce, there is a small amount of variance in their offspring. This allows organisms to respond to changes in their environment over several generations. Applied to bacteria, when they treated with antibiotics, only the strongest survive and multiply, creating an increasing resilient population.

Subject:
Life Science
Material Type:
Activity/Lab
Game
Interactive
Simulation
Provider:
University of Wisconsin
Provider Set:
The Yard Games
Date Added:
08/04/2016
Apple Sensory Response (PreK - 1st Grade) Agricultural STEM Activity
Conditional Remix & Share Permitted
CC BY-SA
Rating
0.0 stars

In this lesson, students will explore apples using their five senses. Includes activity instructions, extension activities, songs, and apple and five senses realted reading list.

NGSS: K-ESS3-1, 1-LS1-1

Time: 30 minutes

Materials: "Apples Grow on Trees" or other book about apples.

Subject:
Agriculture
Career and Technical Education
Education
Elementary Education
Material Type:
Activity/Lab
Lesson Plan
Author:
Columbia Gorge STEM Hub
Date Added:
08/06/2020
Apples to Oregon (K - 4th Grade) Agricultural STEM Activity
Conditional Remix & Share Permitted
CC BY-SA
Rating
0.0 stars

In this lesson, students are introduced to trees and the many things we commonly use that come from trees. Includes introductory movement activity, guided discussion, a matching game, and fun facts.

NGSS: Partially meets 1-LS1-1, 2-PS1-1, 2-PS1-2

Common Core: W.2.7, W.2.8

Time: 30 minutes

Materials: "Apples to Oregon" book and three paper lunch bags labled: wood, food, cellulose.

Subject:
Agriculture
Career and Technical Education
Material Type:
Activity/Lab
Lesson Plan
Author:
Columbia Gorge STEM Hub
Date Added:
08/07/2020
Applying Hooke's Law to Cancer Detection
Read the Fine Print
Educational Use
Rating
0.0 stars

Students explore Hooke's law while working in small groups at their lab benches. They collect displacement data for springs with unknown spring constants, k, by adding various masses of known weight. After exploring Hooke's law and answering a series of application questions, students apply their new understanding to explore a tissue of known surface area. Students then use the necessary relationships to depict a cancerous tumor amidst normal tissue by creating a graph in Microsoft Excel.

Subject:
Applied Science
Engineering
Health, Medicine and Nursing
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Luke Diamond
Date Added:
09/18/2014
Applying Statistics to Nano-Circuit Dimensions in Fabrication
Read the Fine Print
Educational Use
Rating
0.0 stars

Measuring the dimensions of nano-circuits requires an expensive, high-resolution microscope with integrated video camera and a computer with sophisticated imaging software, but in this activity, students measure nano-circuits using a typical classroom computer and (the free-to-download) GeoGebra geometry software. Inserting (provided) circuit pictures from a high-resolution microscope as backgrounds in GeoGebra's graphing window, students use the application's tools to measure lengths and widths of circuit elements. To simplify the conversion from the on-screen units to the real circuits' units and the manipulation of the pictures, a GeoGebra measuring interface is provided. Students export their data from GeoGebra to Microsoft® Excel® for graphing and analysis. They test the statistical significance of the difference in circuit dimensions, as well as obtain a correlation between average changes in original vs. printed circuits' widths. This activity and its associated lesson are suitable for use during the last six weeks of the AP Statistics course; see the topics and timing note below for details.

Subject:
Mathematics
Statistics and Probability
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Cunjiang Yu
Miguel R. Ramirez
Minwei Xu
Song Chen
Date Added:
02/17/2017
Aqua-Thrusters!
Read the Fine Print
Educational Use
Rating
0.0 stars

In this activity, students construct their own rocket-powered boat called an "aqua-thruster." These aqua-thrusters will be made from a film canister and will use carbon dioxide gas produced from a chemical reaction between an antacid tablet and water to propel it. Students observe the effect that surface area of this simulated solid rocket fuel has on thrust.

Subject:
Applied Science
Engineering
Physical Science
Physics
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Brian Argrow
Janet Yowell
Jay Shah
Jeff White
Luke Simmons
Malinda Schaefer Zarske
Date Added:
10/14/2015
Arctic Animal Robot
Read the Fine Print
Educational Use
Rating
0.0 stars

Students create four-legged walking robots and measure how far they travel across different types of surfaces. They design and create "shoes" to add to the robots' feet and observe the effect of their modifications on the net distance traveled across the various surface types. This activity illustrates how the specialized locomotive features of different species help them to survive or thrive in their habitat environments. The activity is best as an enrichment tool that follows a lesson that introduces the concept of biological adaptation to students.

Subject:
Applied Science
Career and Technical Education
Electronic Technology
Engineering
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Andrew Cave
Date Added:
09/18/2014
Arctic Bird Migration Monitoring Protocol
Read the Fine Print
Rating
0.0 stars

The purpose of this resource is to observe when selected bird species first arrive at your study site, and to count the numbers until few or none of these birds are seen. Students select a common and easily identifiable bird species in their region and observe when the bird species first arrives. Students use binoculars or telescopes to scan a study site and count how many they see. They continue to observe every other day until few or none of the selected species can be seen.

Subject:
Applied Science
Ecology
Environmental Science
Life Science
Material Type:
Activity/Lab
Homework/Assignment
Interactive
Lesson Plan
Teaching/Learning Strategy
Provider:
The GLOBE Program
Author:
The GLOBE Program, University Corporation for Atmospheric Research (UCAR)
Date Added:
01/09/2007