Updating search results...

Applied Science Textbooks and Full Courses

3044 affiliated resources

Search Resources

View
Selected filters:
Electrochemical Energy Systems
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This course introduces principles and mathematical models of electrochemical energy conversion and storage. Students study equivalent circuits, thermodynamics, reaction kinetics, transport phenomena, electrostatics, porous media, and phase transformations. In addition, this course includes applications to batteries, fuel cells, supercapacitors, and electrokinetics.

Subject:
Applied Science
Chemistry
Engineering
Physical Science
Material Type:
Full Course
Provider:
MIT
Provider Set:
MIT OpenCourseWare
Author:
Bazant, Martin
Date Added:
02/01/2014
Electrochemical Processing of Materials
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This course covers a variety of topics concerning superconducting magnets, including thermodynamic and transport properties of aqueous and nonaqueous electrolytes, the electrode/electrolyte interface, and the kinetics of electrode processes. It also covers electrochemical characterization with regards to d.c. techniques (controlled potential, controlled current) and a.c. techniques (voltametry and impedance spectroscopy). Applications of the following will also be discussed: electrowinning, electrorefining, electroplating, and electrosynthesis, as well as electrochemical power sources (batteries and fuel cells).

Subject:
Applied Science
Career and Technical Education
Chemistry
Engineering
Environmental Science
Environmental Studies
Physical Science
Physics
Material Type:
Full Course
Provider:
MIT
Provider Set:
MIT OpenCourseWare
Author:
Sadoway, Donald
Date Added:
02/01/2001
Electrolysers, Fuel Cells and Batteries: Analytical Modelling
Unrestricted Use
CC BY
Rating
0.0 stars

Electrochemical engineering deals with electrochemical devices like electrolysers, fuel cells, and batteries. While several excellent books exist in this long-standing and still growing field, their focus is usually on chemistry or phenomenology. In this textbook, we focus on mathematical modelling of the physical phenomena involved. Instead of resorting to numerical modelling, the aim is to derive simplified analytical models that maximise understanding.

Porous electrodes, ion mass transport, and multiphase flow are central themes in this book. Examples include modelling the water saturation in a fuel cell diffusion layer, the gas fraction and current distribution in an alkaline water electrolyser, the potential distribution in a binary electrolyte inside porous battery electrode, and the concentration distribution in the flow channel of a redox flow battery. This makes for a diverse, challenging, and stimulating journey, for both students and researchers.

Subject:
Applied Science
Engineering
Material Type:
Textbook
Provider:
Delft University of Technology
Author:
Willem Haverkort
Date Added:
04/16/2024
Electromagnetic Energy: From Motors to Lasers
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This course discusses applications of electromagnetic and equivalent quantum mechanical principles to classical and modern devices. It covers energy conversion and power flow in both macroscopic and quantum-scale electrical and electromechanical systems, including electric motors and generators, electric circuit elements, quantum tunneling structures and instruments. It studies photons as waves and particles and their interaction with matter in optoelectronic devices, including solar cells, displays, and lasers.
The instructors would like to thank Scott Bradley, David Friend, Ta-Ming Shih, and Yasuhiro Shirasaki for helping to develop the course, and Kyle Hounsell, Ethan Koether, and Dmitri Megretski for their work preparing the lecture notes for OCW publication.

Subject:
Applied Science
Career and Technical Education
Electronic Technology
Engineering
Environmental Science
Environmental Studies
Physical Science
Physics
Material Type:
Full Course
Provider:
MIT
Provider Set:
MIT OpenCourseWare
Author:
Bulovic, Vladimir
Gu, Yu
Lang, Jeffrey
Leeb, Steven
Ram, Rajeev
Date Added:
02/01/2011
Electromagnetic Field Theory: A Problem Solving Approach
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This text is an introductory treatment on the junior level for a two-semester electrical engineering course starting from the Coulomb-Lorentz force law on a point charge. The theory is extended by the continuous superposition of solutions from previously developed simpler problems leading to the general integral and differential field laws. Often the same problem is solved by different methods so that the advantages and limitations of each approach becomes clear. Sample problems and their solutions are presented for each new concept with great emphasis placed on classical models of physical phenomena such as polarization, conduction, and magnetization. A large variety of related problems that reinforce the text material are included at the end of each chapter for exercise and homework.

Subject:
Applied Science
Career and Technical Education
Electronic Technology
Engineering
Mathematics
Physical Science
Physics
Material Type:
Full Course
Provider:
MIT
Provider Set:
MIT OpenCourseWare
Author:
Zahn, Markus
Date Added:
02/01/2008
Electromagnetic Fields and Energy
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

Published in 1989 by Prentice-Hall, this book is a useful resource for educators and self-learners alike. The text is aimed at those who have seen Maxwell’s equations in integral and differential form and who have been exposed to some integral theorems and differential operators. A hypertext version of this textbook can be found here. An accompanying set of video demonstrations is available below.
These video demonstrations convey electromagnetism concepts. The demonstrations are related to topics covered in the textbook. They were prepared by Markus Zahn, James R. Melcher, and Manuel L. Silva and were produced by the Department of Electrical Engineering and Computer Science at the Massachusetts Institute of Technology.
The purpose of these demonstrations is to make mathematical analysis of electromagnetism take on physical meaning. Based on relatively simple configurations and arrangements of equipment, they make a direct connection between what has been analytically derived and what is observed. They permit the student to observe physically what has been described symbolically. Often presented with a plot of theoretical predictions that are compared to measured data, these demonstrations give the opportunity to test the range of validity of the theory and present a quantitative approach to dealing with the physical world.
The short form of these videos contains the demonstrations only. The long form also presents theory, diagrams, and calculations in support of the demonstrations.
These videos are used in the courses 6.013/ESD.013J and 6.641.

Subject:
Applied Science
Career and Technical Education
Electronic Technology
Engineering
Physical Science
Physics
Material Type:
Full Course
Provider:
MIT
Provider Set:
MIT OpenCourseWare
Author:
Haus, Hermann
Melcher, James
Silva, Manuel
Zahn, Markus
Date Added:
02/01/2008
Electromagnetic Interactions
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This course is a graduate level subject on electromagnetic theory with particular emphasis on basics and applications to Nuclear Science and Engineering. The basic topics covered include electrostatics, magnetostatics, and electromagnetic radiation. The applications include transmission lines, waveguides, antennas, scattering, shielding, charged particle collisions, Bremsstrahlung radiation, and Cerenkov radiation.
Acknowledgments
Professor Freidberg would like to acknowledge the immense contributions made to this course by its previous instructors, Ian Hutchinson and Ron Parker.

Subject:
Applied Science
Engineering
Environmental Science
Physical Science
Physics
Material Type:
Full Course
Provider:
MIT
Provider Set:
MIT OpenCourseWare
Author:
Freidberg, Jeffrey
Date Added:
09/01/2005
Electromagnetics
Conditional Remix & Share Permitted
CC BY-SA
Rating
0.0 stars

I have revamped the book Electromagnetics 1 by Steven Ellingson as a part of idoer project. Changes I made in this version of the book include:
• Cover design
• Typesetting
• Visual improvement of figures
• Addition of problems.

If you notice any errors please check the original source which is available at:
https://vtechworks.lib.vt.edu/handle/10919/84164

Image source:
https://drive.google.com/drive/folders/1k2zHmuuHwUTnM5ea5ifaqcvkU5XJ_9eT

If you have any questions about this version of the work please message me directly or contact me at watershiptepesi@gmail.com.

Subject:
Applied Science
Engineering
Physical Science
Physics
Material Type:
Textbook
Author:
Steven W. Ellingson
Date Added:
08/15/2023
Electromagnetics, Volume 1
Conditional Remix & Share Permitted
CC BY-SA
Rating
0.0 stars

Electromagnetics Volume 1 by Steven W. Ellingson is a 225-page, peer-reviewed open educational resource intended for electrical engineering students in the third year of a bachelor of science degree program. It is intended as a primary textbook for a one-semester first course in undergraduate engineering electromagnetics. The book employs the “transmission lines first” approach in which transmission lines are introduced using a lumped-element equivalent circuit model for a differential length of transmission line, leading to one-dimensional wage equations for voltage and current.

Suggested citation: Ellingson, Steven W. (2018) Electromagnetics, Vol. 1. Blacksburg, VA: VT Publishing. https://doi.org/10.21061/electromagnetics-vol-1 CC BY-SA 4.0

Three formats of this book are available:
Print (ISBN 978-0-9979201-8-5)
PDF (ISBN 978-0-9979201-9-2)
LaTeX source files

If you are a professor reviewing, adopting, or adapting this textbook please help us understand a little more about your use by filling out this form: http://bit.ly/vtpublishing-updates

Additional Resources
Problem sets and the corresponding solution manual are also available.
Community portal for the Electromagnetics series https://www.oercommons.org/groups/electromagnetics-user-group/3455/
Faculty listserv for the Electromagnetics series https://groups.google.com/a/vt.edu/d/forum/electromagnetics-g
Submit feedback and suggestions http://bit.ly/electromagnetics-suggestion

Table of Contents:
Chapter 1: Preliminary Concepts
Chapter 2: Electric and Magnetic Fields
Chapter 3: Transmission Lines
Chapter 4: Vector Analysis
Chapter 5: Electrostatics
Chapter 6: Steady Current and Conductivity
Chapter 7: Magnetostatics
Chapter 8: Time-Varying Fields
Chapter 9: Plane Waves in Lossless Media
Appendixes
A. Constitutive Parameters of Some Common Materials
B. Mathematical Formulas
C. Physical Constants

About the Author: Steven W. Ellingson (ellingson@vt.edu) is an Associate Professor at Virginia Tech in Blacksburg, Virginia in the United States. He received PhD and MS degrees in Electrical Engineering from the Ohio State University and a BS in Electrical & Computer Engineering from Clarkson University. He was employed by the US Army, Booz-Allen & Hamilton, Raytheon, and the Ohio State University ElectroScience Laboratory before joining the faculty of Virginia Tech, where he teaches courses in electromagnetics, radio frequency systems, wireless communications, and signal processing. His research includes topics in wireless communications, radio science, and radio frequency instrumentation. Professor Ellingson serves as a consultant to industry and government and is the author of Radio Systems Engineering (Cambridge University Press, 2016).

This textbook is part of the Open Electromagnetics Project led by Steven W. Ellingson at Virginia Tech. The goal of the project is to create no-cost openly-licensed content for courses in undergraduate engineering electromagnetics. The project is motivated by two things: lowering learning material costs for students and giving faculty the freedom to adopt, modify, and improve their educational resources.

Accessibility features of this book: Screen reader friendly, navigation, and Alt-text for all images and figures.

Publication of this book was made possible in part by the Open Education Faculty Initiative Grant program at the University Libraries at Virginia Tech. http://guides.lib.vt.edu/oer/grants

Subject:
Applied Science
Engineering
Physical Science
Physics
Material Type:
Activity/Lab
Textbook
Provider:
Virginia Tech
Provider Set:
VTech Works
Author:
Steven W. Ellingson
Date Added:
08/23/2018
Electromagnetics, Volume 2
Conditional Remix & Share Permitted
CC BY-SA
Rating
0.0 stars

Electromagnetics, volume 2 by Steven W. Ellingson is a 216-page peer-reviewed open textbook designed especially for electrical engineering students in the third year of a bachelor of science degree program. It is intended as the primary textbook for the second semester of a two-semester undergraduate engineering electromagnetics sequence. The book addresses magnetic force and the Biot-Savart law; general and lossy media; parallel plate and rectangular waveguides; parallel wire, microstrip, and coaxial transmission lines; AC current flow and skin depth; reflection and transmission at planar boundaries; fields in parallel plate, parallel wire, and microstrip transmission lines; optical fiber; and radiation and antennas.

Table of Contents:
Chapter 1: Preliminary Concepts
Chapter 2: Magnetostatics Redux
Chapter 3: Wave Propagation in General Media
Chapter 4: Current Flow in Imperfect Conductors
Chapter 5: Wave Reflection and Transmission
Chapter 6: Waveguides
Chapter 7: Transmission Lines Redux
Chapter 8: Optical Fiber
Chapter 9: Radiation
Chapter 10: Antennas
Appendix A: Constitutive Parameters of Some Common Materials
Appendix B: Mathematical Formulas
Appendix C: Physical Constants

Additional Resources
Problem sets and the corresponding solution manuals
Slides of figures used in and created for the book
LaTeX sourcefiles.
Screen-reader friendly version
Errata for Volume 2
Collaborator portal for the Electromagnetics series https://www.oercommons.org/groups/electromagnetics-user-group/3455
Faculty listserv for the Electromagnetics series
Submit feedback and suggestions

The Open Electromagnetics Project https://www.faculty.ece.vt.edu/swe/oem
Led by Steven W. Ellingson at Virginia Tech, the goal of the Open Electromagnetics Project is to create no-cost openly-licensed content for courses in engineering electromagnetics. The project is motivated by two things: lowering learning material costs for students and giving faculty the freedom to adopt, modify, and improve their educational resources.

Books in this Series
Electromagnetics, Volume 1 https://doi.org/10.21061/electromagnetics-vol-1
Electromagnetics, Volume 2 https://doi.org/10.21061/electromagnetics-vol-2

To express your interest in a book or this series, please visit http://bit.ly/vtpublishing-updates

Subject:
Applied Science
Engineering
Physical Science
Physics
Material Type:
Activity/Lab
Textbook
Provider:
Virginia Tech
Provider Set:
VTech Works
Author:
Steven W. Ellingson
Date Added:
12/16/2019
Electromagnetics and Applications
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This course explores electromagnetic phenomena in modern applications, including wireless and optical communications, circuits, computer interconnects and peripherals, microwave communications and radar, antennas, sensors, micro-electromechanical systems, and power generation and transmission. Fundamentals include quasistatic and dynamic solutions to Maxwell’s equations; waves, radiation, and diffraction; coupling to media and structures; guided waves; resonance; acoustic analogs; and forces, power, and energy.

Subject:
Applied Science
Career and Technical Education
Electronic Technology
Engineering
Physical Science
Physics
Material Type:
Full Course
Provider:
MIT
Provider Set:
MIT OpenCourseWare
Author:
Staelin, David
Date Added:
02/01/2009
Electromagnetics and Applications
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This course explores electromagnetic phenomena in modern applications, including wireless communications, circuits, computer interconnects and peripherals, optical fiber links and components, microwave communications and radar, antennas, sensors, micro-electromechanical systems, motors, and power generation and transmission. Fundamentals covered include: quasistatic and dynamic solutions to Maxwell’s equations; waves, radiation, and diffraction; coupling to media and structures; guided and unguided waves; resonance; and forces, power, and energy.
Acknowledgments
The instructors would like to thank Robert Haussman for transcribing into LaTeX the problem set and Quiz 2 solutions.

Subject:
Applied Science
Career and Technical Education
Electronic Technology
Engineering
Physical Science
Physics
Material Type:
Full Course
Provider:
MIT
Provider Set:
MIT OpenCourseWare
Author:
Ippen, Erich
Staelin, David
Zahn, Markus
Date Added:
09/01/2005
Electromechanical Dynamics
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

First published in 1968 by John Wiley and Sons, Inc., Electromechanical Dynamics discusses the interaction of electromagnetic fields with media in motion. The subject combines classical mechanics and electromagnetic theory and provides opportunities to develop physical intuition. The book uses examples that emphasize the connections between physical reality and analytical models. Types of electromechanical interactions covered include rotating machinery, plasma dynamics, the electromechanics of biological systems, and magnetoelasticity.
An accompanying solutions manual for the problems in the text is provided.

Subject:
Applied Science
Career and Technical Education
Electronic Technology
Engineering
Physical Science
Physics
Material Type:
Full Course
Provider:
MIT
Provider Set:
MIT OpenCourseWare
Author:
Melcher, James
Woodson, Herbert
Date Added:
02/01/2009
Electronic Feedback Systems
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

Feedback control is an important technique that is used in many modern electronic and electromechanical systems. The successful inclusion of this technique improves performance, reliability, and cost effectiveness of many designs. In this series of lectures we introduce the analytical concepts that underlie classical feedback system design. The application of these concepts is illustrated by a variety of experiments and demonstration systems. The diversity of the demonstration systems reinforces the value of the analytic methods.

Subject:
Applied Science
Career and Technical Education
Electronic Technology
Engineering
Material Type:
Full Course
Provider:
MIT
Provider Set:
MIT OpenCourseWare
Author:
Roberge, James
Date Added:
02/01/2013
Electronic, Optical and Magnetic Properties of Materials
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This course describes how electronic, optical and magnetic properties of materials originate from their electronic and molecular structure and how these properties can be designed for particular applications. It offers experimental exploration of the electronic, optical and magnetic properties of materials through hands-on experimentation and practical materials examples.

Subject:
Applied Science
Engineering
Physical Science
Physics
Material Type:
Full Course
Provider:
MIT
Provider Set:
MIT OpenCourseWare
Author:
Anikeeva, Polina
Beach, Geoffrey
Holten-Andersen, Niels
Date Added:
02/01/2013
Electronic Resource Management in Libraries
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This is a textbook for library science students and librarians on electronic resource management. It includes four main chapters that cover the electronic resource librarianship, technologies and standards, e-resource stewardship, and patrons. The book was written and is used by the author and is updated annually when the course is taught.

Subject:
Applied Science
Business and Communication
Information Science
Management
Technology
Material Type:
Full Course
Author:
C. Sean Burns
Date Added:
08/10/2023
Electronic and Mechanical Properties of Materials
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This course covers the fundamental concepts that determine the electrical, optical, magnetic and mechanical properties of metals, semiconductors, ceramics and polymers. The roles of bonding, structure (crystalline, defect, energy band and microstructure) and composition in influencing and controlling physical properties are discussed. Also included are case studies drawn from a variety of applications: semiconductor diodes and optical detectors, sensors, thin films, biomaterials, composites and cellular materials, and others.

Subject:
Applied Science
Engineering
Physical Science
Physics
Material Type:
Full Course
Provider:
MIT
Provider Set:
MIT OpenCourseWare
Author:
Fitzgerald, Eugene
Gibson, Lorna
Date Added:
09/01/2007
Elektronische Signaalbewerking
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

Na het behalen van dit vak kan de student:

filter-overdrachtsfuncties middels state-space synthese afbeelden op filter-topologieen, deze optimaliseren m.b.t. dynamisch bereik en gevoeligheid voor componenten-variaties en realiseren met behulp van integratoren;
circuits voor integratoren, analoge filters, continue-tijd filters, en nullors (operationele versterkers) ontwerpen en effecten ten gevolge van niet-ideale componenten en aliasing analyseren

Subject:
Applied Science
Career and Technical Education
Electronic Technology
Engineering
Material Type:
Full Course
Provider:
Delft University of Technology
Provider Set:
Delft University OpenCourseWare
Author:
Dr.ir. W.A. Serdijn
Date Added:
08/14/2014
Elementary Data Structures
Unrestricted Use
CC BY
Rating
0.0 stars

In this course, the student will learn the theoretical and practical aspects of algorithms and Data Structures. The student will also learn to implement Data Structures and algorithms in C/C++, analyze those algorithms, and consider both their worst-case complexity and practical efficiency. Upon successful completion of this course, students will be able to: Identify elementary Data Structures using C/C++ programming languages; Analyze the importance and use of Abstract Data Types (ADTs); Design and implement elementary Data Structures such as arrays, trees, Stacks, Queues, and Hash Tables; Explain best, average, and worst-cases of an algorithm using Big-O notation; Describe the differences between the use of sequential and binary search algorithms. (Computer Science 201)

Subject:
Applied Science
Computer Science
Material Type:
Full Course
Provider:
The Saylor Foundation
Date Added:
11/16/2011
Elementary Differential Equations with Boundary Value Problems
Unrestricted Use
CC BY
Rating
0.0 stars

Elementary Differential Equations with Boundary Value Problems is written for students in science, engineering, and mathematics who have completed calculus through partial differentiation. If your syllabus includes Chapter 10 (Linear Systems of Differential Equations), your students should have some preparation in linear algebra. In writing this book I have been guided by the these principles: An elementary text should be written so the student can read it with comprehension without too much pain. I have tried to put myself in the student's place, and have chosen to err on the side of too much detail rather than not enough. An elementary text can't be better than its exercises. This text includes 2041 numbered exercises, many with several parts. They range in difficulty from routine to very challenging. An elementary text should be written in an informal but mathematically accurate way, illustrated by appropriate graphics. I have tried to formulate mathematical concepts succinctly in language that students can understand. I have minimized the number of explicitly stated theorems and defonitions, preferring to deal with concepts in a more conversational way, copiously illustrated by 299 completely worked out examples. Where appropriate, concepts and results are depicted in 188 figures

Subject:
Applied Science
Engineering
Mathematics
Material Type:
Textbook
Provider:
Trinity University
Author:
William F. Trench
Date Added:
10/28/2014