High-quality elementary science resources for distance learning from AstroEdu, MIT Blossoms, NGSS@NSTA, Phet Interactives, and TeachEngineering. You can refine the collections by selecting different fields, such as material types, on the left side of the page, under Filter Resources.
Students are introduced to brainstorming and the design process in problem solving …
Students are introduced to brainstorming and the design process in problem solving as it relates to engineering. They perform an activity to develop and understand problem solving with an emphasis on learning from history. Using only paper, straws, tape and paper clips, they create structures that can support the weight of at least one textbook. In their first attempts to build the structures, they build whatever comes to mind. For the second trial, they examine examples of successful buildings from history and try again.
Why do the lights turn on in a room as soon as you flip a switch? Flip the switch and electrons slowly creep along a wire. The light turns on when the signal reaches it.
In this activity, students play the game Simon Says to make the …
In this activity, students play the game Simon Says to make the amplitudes and wavelengths defined by the teacher. First they play alone, and then they play with a partner using a piece of rope.
Students work with partners to create four different instruments to investigate the …
Students work with partners to create four different instruments to investigate the frequency of the sounds they make. Teams may choose to make a shoebox guitar, water-glass xylophone, straw panpipe or a soda bottle organ (or all four!). Conduct this activity in conjunction with Lesson 3 of the Sound and Light unit.
Students apply the mechanical advantages and problem-solving capabilities of six types of …
Students apply the mechanical advantages and problem-solving capabilities of six types of simple machines (wedge, wheel and axle, lever, inclined plane, screw, pulley) as they discuss modern structures in the spirit of the engineers and builders of the great pyramids. While learning the steps of the engineering design process, students practice teamwork, creativity and problem solving.
Students learn how engineering design is applied to solve healthcare problems by …
Students learn how engineering design is applied to solve healthcare problems by using an engineering tool called simulation. While engineering design is commonly used to study and design everything from bridges, factories, airports to space shuttles, the use of engineering design to study healthcare administration and delivery is a relatively new concept.
Students explore building a pyramid, learning about the simple machine called an …
Students explore building a pyramid, learning about the simple machine called an inclined plane. They also learn about another simple machine, the screw, and how it is used as a lifting or fastening device. During a hands-on activity, students see how the angle of inclination and pull force can make it easier (or harder) to pull an object up an inclined plane.
In the culminating activity of the unit, students explore and apply their …
In the culminating activity of the unit, students explore and apply their knowledge of forces, friction, acceleration and gravity in a two-part experiment. First, student groups measure the average acceleration of a textbook pulled along a table by varying weights (with optional extensions, such as with the addition of a pulley or an inclined plane). Then, with a simple modification to the same experimental setup, teams test different surfaces for the effects of friction, graphing and analyzing their results. Students also consider the real-world applications for high- and low-friction surfaces for different situations and purposes, seeing how forces play a role in engineering design and material choices.
Students are introduced to the engineering challenges involved with interplanetary space travel. …
Students are introduced to the engineering challenges involved with interplanetary space travel. In particular, they learn about the gravity assist or "slingshot" maneuver often used by engineers to send spacecraft to the outer planets. Using magnets and ball bearings to simulate a planetary flyby, students investigate what factors influence the deflection angle of a gravity assist maneuver.
Students develop a persuasive peer-to-peer case against smoking, with the goal to …
Students develop a persuasive peer-to-peer case against smoking, with the goal to understand how language usage can influence perception, attitudes and behavior.
Students explore why different types of sneakers are used in a variety …
Students explore why different types of sneakers are used in a variety of common sports, and how engineers analyze design needs in sneakers and many other everyday items. The goal is for students to understand the basics of engineering associated with the design of athletic shoes. The design of footware based on how it will be used involves bioengineering. Students analyze the foot movements in a variety of sports, develop design criteria for a specific sport, and make recommendations for requirements for the sneakers used in that sport.
Engineers work in many fields associated with precipitation. Engineers study glaciers to …
Engineers work in many fields associated with precipitation. Engineers study glaciers to better understand their dates of formation and current demise. They deal with issues of pollution transport and water yield, and they monitor reservoirs and dams to prevent flooding.
Students learn about contamination and pollution, specifically in reference to soil in …
Students learn about contamination and pollution, specifically in reference to soil in and around rivers. To start, groups use light sensors to take light reflection measurements of different colors of sand (dyed with various amounts of a liquid food dye), generating a set of "soil" calibration data. Then, they use a stream table with a simulated a river that has a scattering of "contaminated wells" represented by locations of unknown amounts of dye. They make visual observations and use light sensors again to take reflection measurements and refer to their earlier calibration data to determine the level of "contamination" (color dye) in each well. Acting as engineers, they determine if their measured data is comparable to visual observations. The small-scale simulated flowing river shows how contamination can spread.
In this activity, students learn how engineers use solar energy to heat …
In this activity, students learn how engineers use solar energy to heat buildings by investigating the thermal storage properties of some common materials: sand, salt, water and shredded paper. Students then evaluate the usefulness of each material as a thermal storage material to be used as the thermal mass in a passive solar building.
An introduction to our solar system the planets, our Sun and Moon. …
An introduction to our solar system the planets, our Sun and Moon. To begin, students learn about the history and engineering of space travel. They make simple rockets to acquire a basic understanding Newton's third law of motion. They explore energy transfer concepts and use renewable solar energy for cooking. They see how engineers design tools, equipment and spacecraft to go where it is too far and too dangerous for humans. They explore the Earth's water cycle, and gravity as applied to orbiting bodies. They learn the steps of the design process as they create their own models of planetary rovers made of edible parts. Students conduct experiments to examine soil for signs of life, and explore orbit transfers. While studying about the International Space Station, they investigate the realities of living in space. Activities explore low gravity on human muscles, eating in microgravity, and satellite tracking. Finally, students learn about the context of our solar system the universe as they learn about the Hubble Space Telescope, celestial navigation and spectroscopy.
The students will paint and arrange spheres to form a model of …
The students will paint and arrange spheres to form a model of the solar system. They will first make models using the plastic spheres of different sizes. Then they will make similar models using clay, cotton, etc., and organize them in the right order from the Sun.
Students are given a variety of materials and asked to identify each …
Students are given a variety of materials and asked to identify each material as a solid, liquid or gas. They use their five senses ŰÓ sight, sound, smell, texture and taste ŰÓ to identify the other characteristics of each item.
Students continue their pyramid building journey, acting as engineers to determine the …
Students continue their pyramid building journey, acting as engineers to determine the appropriate wedge tool to best extract rock from a quarry and cut into pyramid blocks. Using sample materials (wax, soap, clay, foam) representing rock types that might be found in a quarry, they test a variety of wedges made from different materials and with different degrees of sharpness to determine which is most effective at cutting each type of material.
In this lesson, students explore solid waste and its effects on the …
In this lesson, students explore solid waste and its effects on the environment. They will collect classroom trash for analysis and build model landfills in order to understand the process and impact of solid waste management. Students will understand the role of engineers in solid waste management.
In this project, students will use knowledge of electricity and electromagnetism to …
In this project, students will use knowledge of electricity and electromagnetism to collaboratively design and test a model of a magnetic recycling sorter. They will evaluate the performance of their models and propose further modifications based on the output of their magnetic device measured in mT using a Vernier probe. They will also physically test their magnets on a model of a conveyor belt containing recyclable items. Students will track their data from both tests, with the ultimate goal of creating the strongest and most effective magnet with given materials. Finally, students will present their findings and proposed final design to peers and community partners involved in the recycling industry. The entire process takes about 6 weeks. The unit is a great fit for standards within energy and engineering & design.
No restrictions on your remixing, redistributing, or making derivative works. Give credit to the author, as required.
Your remixing, redistributing, or making derivatives works comes with some restrictions, including how it is shared.
Your redistributing comes with some restrictions. Do not remix or make derivative works.
Most restrictive license type. Prohibits most uses, sharing, and any changes.
Copyrighted materials, available under Fair Use and the TEACH Act for US-based educators, or other custom arrangements. Go to the resource provider to see their individual restrictions.