All resources in Science

9th Grade Cube Challenge

(View Complete Item Description)

Students will use a perceived weak material to construct something that is surprisingly strong. Students can experiment with different shapes and configurations to see what holds the most weight. The cube size is defined, what each student places within each 4x4 square, is up to them.

Material Type: Activity/Lab, Lesson

Author: John Brander

The Amazing Buckyball: How to Track Nanomaterials in the Human Body

(View Complete Item Description)

Students learn how nanoparticles can be creatively used for medical diagnostic purposes. They learn about buckminsterfullerenes, more commonly known as buckyballs, and about the potential for these complex carbon molecules to deliver drugs and other treatments into the human body. They brainstorm methods to track buckyballs in the body, then build a buckyball from pipe cleaners with a fluorescent tag to model how nanoparticles might be labeled and detected for use in a living organism. As an extension, students research and select appropriate radioisotopes for different medical applications.

Material Type: Activity/Lab

Authors: Diana Gano, Donna Tate

Bacteria Transformation

(View Complete Item Description)

Students construct paper recombinant plasmids to simulate the methods genetic engineers use to create modified bacteria. They learn what role enzymes, DNA and genes play in the modification of organisms. For the particular model they work on, they isolate a mammal insulin gene and combine it with a bacteria's gene sequence (plasmid DNA) for production of the protein insulin.

Material Type: Activity/Lab

Authors: Kimberly Anderson, Matthew Zelisko

Bees: The Invaluable Master Pollinators

(View Complete Item Description)

The study of biomimicry and sustainable design promises great benefits in design applications, offering cost-effective, resourceful, non-polluting avenues for new enterprise. An important final caveat for students to understand is that once copied, species are not expendable. Biomimicry is intended to help people by identifying natural functions from which to pattern human-driven services. Biomimicry was never intended to replace species. Ecosystems remain in critical need of ongoing protection and biodiversity must be preserved for the overall health of the planet. This activity addresses the negative ramifications of species decline. For example, pollinators such as bees are a vital work force in agriculture. They perform an irreplaceable task in ensuring the harvest of most fruit and vegetable crops. In the face of the unexplained colony collapse disorder, we are only now beginning to understand how invaluable these insects are in keeping food costs down and even making the existence of these foods possible for humans.

Material Type: Activity/Lab

Authors: Amber Spolarich, Wendy J. Holmgren

Blood Clots, Polymers and Strokes

(View Complete Item Description)

Students are introduced to the circulatory system with an emphasis on the blood clotting process, including coagulation and the formation and degradation of polymers through their underlying atomic properties. They learn about the medical emergency of strokes the loss of brain function commonly due to blood clots including various causes and the different effects depending on the brain location, as well as blood clot removal devices designed by biomedical engineers.

Material Type: Lesson Plan

Authors: Ann McCabe, Azim Laiwalla, Carleigh Samson, Victoria Lanaghan

Applying Hooke's Law to Cancer Detection

(View Complete Item Description)

Students explore Hooke's law while working in small groups at their lab benches. They collect displacement data for springs with unknown spring constants, k, by adding various masses of known weight. After exploring Hooke's law and answering a series of application questions, students apply their new understanding to explore a tissue of known surface area. Students then use the necessary relationships to depict a cancerous tumor amidst normal tissue by creating a graph in Microsoft Excel.

Material Type: Activity/Lab

Author: Luke Diamond

Body Full of Crystals

(View Complete Item Description)

Students learn about various crystals, such as kidney stones, within the human body. They also learn about how crystals grow and ways to inhibit their growth. They also learn how researchers such as chemical engineers design drugs with the intent to inhibit crystal growth for medical treatment purposes and the factors they face when attempting to implement their designs. A day before presenting this lesson to students, conduct the associated activity, Rock Candy Your Body.

Material Type: Lesson Plan

Authors: Andrea Lee, Megan Ketchum

Bone Crusher

(View Complete Item Description)

Students use a tension-compression machine (or an alternative bone-breaking setup) to see how different bones fracture differently and with different amounts of force, depending on their body locations. Teams determine bone mass and volume, calculate bone density, and predict fracture force. Then they each test a small animal bone (chicken, turkey, cat) to failure, examining the break to analyze the fracture type. Groups conduct research about biomedical challenges, materials and repair methods, and design repair treatment plans specific to their bones and fracture types, presenting their design recommendations to the class.

Material Type: Activity/Lab

Authors: Andrea Lee, Megan Ketchum

Waves: The Three Color Mystery

(View Complete Item Description)

Students are presented with a challenge question concerning color blindness and asked to use engineering principles to design devices to help people who are color blind. Using the legacy cycle as a model, this unit is comprised of five lessons designed to teach wave properties, the electromagnetic spectrum, and the anatomy of the human eye in an interactive format that introduces engineering applications and real-world references. It culminates with an activity in which student teams apply what they have learned to design devices that can aid people with colorblindness in distinguishing colors— as evidenced by their creation of brainstorming posters, descriptive brochures and short team presentations, as if they were engineers reporting to clients. Through this unit, students become more aware of the connections between the biology of the eye and the physical science concept of light, and gain an understanding of how those scientific concepts relate to the field of engineering.

Material Type: Unit of Study

Author: Courtney Faber

Atoms and Conservation of Energy

(View Complete Item Description)

In this activity, students will explore how the Law of Conservation of Energy (the First Law of Thermodynamics) applies to atoms, as well as the implications of heating or cooling a system. This activity focuses on potential energy and kinetic energy as well as energy conservation. The goal is to apply what is learned to both our human scale world and the world of atoms and molecules.

Material Type: Activity/Lab, Full Course, Interactive

Author: The Concord Consortium

Catalysts

(View Complete Item Description)

There are two types of catalysis reactions: homogeneous and heterogeneous. In a homogeneous reaction, the catalyst is in the same phase as the reactants. In a heterogeneous reaction, the catalyst is in a different phase from the reactants. This activity addresses homogeneous catalysis.

Material Type: Data Set, Diagram/Illustration

Author: The Concord Consortium

Create a Safe Bungee Cord for Washy!

(View Complete Item Description)

Students learn about the role engineers and mathematicians play in developing the perfect bungee cord length by simulating and experimenting with bungee jumping using washers and rubber bands. Working as if they are engineers for a (hypothetical) amusement park, students are challenged to develop a show-stopping bungee jumping ride that is safe. To do this, they must find the maximum length of the bungee cord that permits jumpers (such as brave Washy!) to get as close to the ground as possible without going "splat"! This requires them to learn about force and displacement and run an experiment. Student teams collect and plot displacement data and calculate the slope, linear equation of the line of best fit and spring constant using Hooke's law. Students make hypotheses, interpret scatter plots looking for correlations, and consider possible sources of error. An activity worksheet, pre/post quizzes and a PowerPoint® presentation are included.

Material Type: Activity/Lab

Author: Marc Frank

SlinkySeismometer_geoPhysics

(View Complete Item Description)

This unit uses the slinky seismometer as a means of studying physics concepts such as waves, sound and the speed of sound vs speed of light, resonance, electricity and magnetism, Lenz Law and magnetic dampening (backwards engineering). Students experiment with the basic parts of the seismometer and either build or connect the seismometer to the internet to take and upload data.

Material Type: Activity/Lab, Lesson Plan, Reading, Student Guide, Unit of Study

Authors: Dean Livelybrooks, Joe Emery, Lisa Livelybrooks

Build and Test a Model Solar House

(View Complete Item Description)

Construct and measure the energy efficiency and solar heat gain of a cardboard model house. Use a light bulb heater to imitate a real furnace and a temperature sensor to monitor and regulate the internal temperature of the house. Use a bright bulb in a gooseneck lamp to model sunlight at different times of the year, and test the effectiveness of windows for passive solar heating.

Material Type: Activity/Lab, Assessment, Diagram/Illustration, Lecture Notes, Student Guide

Author: The Concord Consortium

The Advantage of Machines

(View Complete Item Description)

In this lesson, students learn about work as defined by physical science and see that work is made easier through the use of simple machines. Already encountering simple machines everyday, students will be alerted to their widespread uses in everyday life. This lesson serves as the starting point for the Simple Machines Unit.

Material Type: Activity/Lab, Lesson Plan

Authors: Glen Sirakavit, Janet Yowell, Malinda Schaefer Zarske, Melissa Straten, Michael Bendewald

Air Bag Design

(View Complete Item Description)

Do you need proof that driving is a dangerous activity? More Americans have died in car crashes over the past 100 years than in all the wars the U.S. has ever fought combined. More than 40,000 Americans die each year on the nation's highways, most as the result of high-speed collisions. In this video segment adapted from NOVA, learn how engineers developed the air bag, an important automobile-safety device now found in most cars. Recommended for: Grades 3-12

Material Type: Activity/Lab

Authors: Argosy Foundation, WGBH Educational Foundation