Introduce students to the creative design process, based on the scientific method …
Introduce students to the creative design process, based on the scientific method and peer review, by application of fundamental principles and learning to complete projects according to schedule and within budget. Subject relies on active learning through a major team-based design-and-build project focused on the need for a new consumer product identified by each team. Topics to be learned while teams create, design, build, and test their product ideas include formulating strategies, concepts and modules, and estimation, concept selection, machine elements, design for manufacturing, visual thinking, communication, teamwork, and professional responsibilities.
This resource is a video abstract of a research paper created by …
This resource is a video abstract of a research paper created by Research Square on behalf of its authors. It provides a synopsis that's easy to understand, and can be used to introduce the topics it covers to students, researchers, and the general public. The video's transcript is also provided in full, with a portion provided below for preview:
"3D-printed with microscale precision, these tiny architectural marvels could be the key to making high-temperature ceramics less vulnerable to fracture. The implications could span across the numerous areas these materials are used, from aerospace to tissue engineering. The blueprint for these hardy structures is reported in the Journal of Materials Research Volume 33, Issue No. 3, earning honors as the 2018 JMR Paper of the Year. Researchers built the miniature trusses layer by layer using a technique called projection microstereolithography. In this process, a UV-light pattern is scanned across a polymer bath composed of photo-active ceramic building blocks. The silicon-based polymer solidifies at every point traced by the UV beam. Subsequent heating in a high-temperature furnace activates the polymer structures, baking off volatile organics, to produce silicon oxycarbide structures. The team then put these structures to the test..."
The rest of the transcript, along with a link to the research itself, is available on the resource itself.
This resource is a video abstract of a research paper created by …
This resource is a video abstract of a research paper created by Research Square on behalf of its authors. It provides a synopsis that's easy to understand, and can be used to introduce the topics it covers to students, researchers, and the general public. The video's transcript is also provided in full, with a portion provided below for preview:
"When modern 3D printing was invented in the early 1980s, few could have predicted the influence it has today. At no other time in history has it been this easy to transform a sketch into the real thing. And while that feat has proven immensely useful for constructing complex machines, it is unlikely more meaningful anywhere else today than in the field of biomedicine. With the ability to churn out standard or custom prosthetics, devices, and even test models, the 3D printing of biomaterials is revolutionizing medical care. One of the greatest conveniences afforded by biomedical 3D printing is the ability to manufacture parts on demand. Common load-bearing prosthetics, such as those for knee or hip replacements, no longer have to be built in bulk and benched before use. Virtually stored print files can be called upon and processed into parts as soon as they are needed in the clinic, with the printing material and method suited to the part’s function and placement..."
The rest of the transcript, along with a link to the research itself, is available on the resource itself.
This eBook was written as the sequel to the eBook titled DC …
This eBook was written as the sequel to the eBook titled DC Circuits, which was written in 2016 by Chad Davis. This eBook covers Alternating Current (AC) circuit theory as well us a brief introduction of electronics. It is broken up into seven modules. Module 1 covers the basic theory of AC signals. Since only DC sources are used in the first eBook, details of AC signals such as sinusoidal waveforms (or sine waves), square waves, and triangle waves are provided. Module 2, titled AC Circuits Math Background, covers the mathematics background needed for solving AC circuit problems. The background material in Modules 1 and 2 are combined in Module 3 to solve circuits with AC sources that include resistors, inductors, and capacitors (RLC circuits).
In this professional development session, we will develop a shared understanding of …
In this professional development session, we will develop a shared understanding of how formative assessment works and different approaches that have been developed. The material for this resource come from a series of PD sessions on formative assessment developed by the ACESSE team: Philip Bell, Shelley Stromholt, Bill Penuel, Katie Van Horne, Tiffany Neill, and Sam Shaw.We will be updating this Facilitator's Guide for ACESSE Resource A with the most up-to-date information about this resource over time. If you encounter problems with this resource, you can contact us at: STEMteachingtools@uw.edu
The NRC Framework for K-12 Science Education and the resulting Next Generation …
The NRC Framework for K-12 Science Education and the resulting Next Generation Science Standards focus on an integrated three-dimensional view of science learning in which students develop understanding of core ideas of science and crosscutting concepts in the context of engaging in science and engineering practices.How is assessing three-dimensional science learning different than how we have thought of science learning in the past? How can we design assessment tasks that elicit student’s current understanding of specific aspects of the disciplinary core ideas, science and engineering practices, and crosscutting concepts in order to shape future instruction? In this workshop, participants will learn how to interpret and design cognitive formative assessment to fit a three-dimensional view of learning.This resource originates from a series of PD sessions on 3D formative assessment developed and provided by Katie Van Horne, Shelley Stromholt, Bill Penuel, and Philip Bell. It has been improved through a collaboration in the ACESSE project with science education experts from 13 states. Please cite this resource as follows:Stromholt, S., Van Horne, K., Bell, P., Penuel, W. R., Neill, T. & Shaw, S. (2017). How to Assess Three-Dimensional Learning in Your Classroom: Building Assessment Tasks that Work. [OER Professional Development Session from the ACESSE Project] Retrieved from http://stemteachingtools.org/pd/SessionB
How can science instruction be meaningfullyconnected to the out-of-school lives of students? In …
How can science instruction be meaningfullyconnected to the out-of-school lives of students? In this professional development, we will consider how to design formative assessments that build on learners’ interest and knowledge, promoting equity and social justice in the process. The material for this resource comes from a series of PD sessions on formative assessment originally developed by Philip Bell and Shelley Stromholt.We will be updating this Facilitator's Guide for ACESSE Resource C with the most up to date information about this resource over time. If you encounter problesm with this resources, you can contact us at STEMteachingtools@uw.eduThis resource was refined through a 13-state collaboration to make the resource more broadly useful. If you choose to adapt these materials, please attribute the source and that it was work funded by the National Science Foundation (NSF).
Abstract: This session provides a step-by-step process to support participants as they design …
Abstract: This session provides a step-by-step process to support participants as they design a 3D assessment task for the science classroom. Along the way, they learn how to define 3D learning performances for specific lessons—and how to use a range of tools to support their assessment design work. A key goal of the session activity is to improve the connection of intended learning goals to assessment practices. Participants build their 3D assessment design capacity by designing and workshopping tasks—before piloting them in their classrooms. The approaches learned in this workshop can be used with any curricula, at any grade level, and across all subjects of science.
Overview: In this workshop, we will build our capacity to identify the …
Overview: In this workshop, we will build our capacity to identify the range of intellectual resources students use as they make sense of phenomena. We will first explore how equity and justice relate to culture-based approaches to pedagogy—and then focus on how to identify and leverage the resources students use in moments of sensemaking. This resource can also be used by individuals wanting to learn how equity involves promoting the rightful presence of all students across scales of justice, desettling inequities, and supporting expansive learning pathways. This workshop provides participants with an opportunity to explore important theoretical ideas by exploring examples of how learners engage in diverse sense-making. Participants will learn about some of the challenges that less expansive learning environments can cause for learners from non-dominant communities. This resource is estimated to take between 161-268 minutes (2 ⅔ - 4 ¾ hours), depending on the choices of the facilitator in scenario selection.
An essential and practical text for both students and teachers of AC …
An essential and practical text for both students and teachers of AC electrical circuit analysis, this text picks up where the companion DC electric circuit analysis text leaves off. Beginning with basic sinusoidal functions, ten chapters cover topics including series, parallel, and series-parallel RLC circuits. Numerous theorems and analysis techniques are examined including superposition, Thévenin's theorem, nodal and mesh analysis, maximum power transfer and more. Other important topics include AC power, resonance, Bode plots and an introduction to three-phase systems. Each chapter begins with a set of chapter objectives and includes a summary and review questions. A total of over 500 end-of-chapter exercises are included. A companion laboratory manual is available.
Machine vision. Data wrangling. Reinforcement learning. What do these terms even mean? In AI 101, MIT researcher …
Machine vision. Data wrangling. Reinforcement learning. What do these terms even mean? In AI 101, MIT researcher Brandon Leshchinskiy offers an introduction to artificial intelligence that’s designed specifically for those with little to no background in the subject. The workshop starts with a summary of key concepts in AI, followed by an interactive exercise where participants train their own algorithm. Finally, it closes with a summary of key takeaways and Q/A. All are welcome!
Learn about the implementation and practical aspects of Artificial Intelligence and how …
Learn about the implementation and practical aspects of Artificial Intelligence and how to write a plan for applying AI in your own organization in a step-by-step manner.
This course is not about difficult algorithms and complex programming; it is a course for anyone interested in learning how to integrate AI into their own organization.
To understand how current Artificial Intelligence applications can be successfully integrated in organizations, we look at different examples. For instance, how ING uses reinforcement learning for personalized dialog management with its customers or how Radboud UMC uses diagnostic image analysis to discover early stages of infectious diseases.
As part of our two-course program ‘AI in Practice’, this course will guide you in the practical aspects of applying AI in your own organization. You will examine typical applications of AI in use already and learn from their experience. These include challenges of implementation, lifecycle aspects, as well as the maintenance and management of AI applications.
The course presents a variety of case studies from actual situations in public organizations and private enterprises in the healthcare, financial, retail and telecommunications sectors. These include Radboud UMC, the Municipality of Amsterdam, ING, Ahold Delhaize and KPN.
‘AI in Practice – Applying AI’ gives you the ammunition to understand the practical aspects required for the implementation of a variety of AI applications in your organization.
This course, AI in Practice: Preparing for AI, is the 1st course …
This course, AI in Practice: Preparing for AI, is the 1st course of the online education program AI in Practice. The course gives you a kaleidoscope of examples of applications of AI in various organizations, outlines the state of the art in modern AI research, and provides practical tools for integrating AI into your own organization. The program AI in Practice is built from two initial courses, AI in Practice: Preparing for AI and AI in Practice: Applying AI.
The AI in Practice: Preparing for AI course is designed for people who want to apply AI in their own practical situation.
For the experienced manager who wants to know what AI can do for her own organization. For the data analyst or business consultant who wants to understand how AI can be applied in the business processes of the company for which they work. For the student who wants to understand how the results of AI research can be translated into practical applications.
Learn the fundamentals and principal AI concepts about clustering, dimensionality reduction, reinforcement …
Learn the fundamentals and principal AI concepts about clustering, dimensionality reduction, reinforcement learning and deep learning to solve real-life problems.
Learn the fundamentals of machine learning to help you correctly apply various …
Learn the fundamentals of machine learning to help you correctly apply various classification and regression machine learning algorithms to real-life problems.
A one-stop shop to get started on the key considerations about data …
A one-stop shop to get started on the key considerations about data for AI! Learn how crowdsourcing offers a viable means to leverage human intelligence at scale for data creation, enrichment and interpretation, demonstrating a great potential to improve both the performance of AI systems and their trustworthiness and increase the adoption of AI in general.
In the last two decades, research in various aspects of mobile ad-hoc …
In the last two decades, research in various aspects of mobile ad-hoc networks, MANETs, has been very active, motivated mainly by military, disaster relief and law enforcement scenarios. More recently, location information has become increasingly available; partially prompted by the emerging trend to incorporate location or position sensing into personal handheld devices. An evolutionary natural step is to adopt such position-based operation in MANETs. This results in what we call position-based MANETs. In such settings, devices are equipped with position-sensing capabilities and rely on position information in their operation. The main distinguishing feature of the envisaged position-based MANET environment is the communication paradigm based not on permanent or semi-permanent identities, addresses or pseudonyms, but on instantaneous node locations or positions. In some application settings, such as: military, law enforcement and search-and-rescue, node identities are not nearly as important as node positions. Such settings have certain characteristics in common. First, node position is very important: knowledge of the physical, as opposed to logical or relative topology, makes it possible to avoid wasteful communication and focus on nodes located within a specific area. Thus, the emphasis is not on the longterm node identity, but rather on current node position. Second, critical environments face security and privacy attacks. Security attacks aim to distribute false location and network ing control information, e.g., routing control messages, or impede the propagation of genuine information. The goal of privacy attacks is to track nodes as they move. Third, when the operating environment is hostile, as is the case in military and law enforcement settings, node identities must not be revealed. We use the term hostile to mean that communication is being monitored by adversarial entities that are not part of the MANET. The need to hide node identities becomes more pressing if we further assume that MANET nodes do not trust each other, due to a suspicious environment where nodes can be compromised. In such an environment, it is natural for node movements to be obscured, such that tracking a given node is impossible or, at least, very difficult. While we do not claim that such suspicious and hostile location-based MANET environments are commonplace, they do occur and require high security and privacy guarantees. While doing all these;there is a challenge for nodes to maintain anonymity protection from outside observers or malicious attackers. Full anonymity protection can be achieved only when ;sources,destinations and routes all are protected. In this work, to offer better anonymity protection, we propose an Anonymous Position-based Security Aware Routing Protocol (APSAR). Experimental results exhibit consistency with the theoretical analysis, and show that APSAR achieves better route anonymity protection compared to other anonymous routing protocols. Also, APSAR achieves comparable routing efficiency to the GPSR geographical routing protocol. The work in this thesis addresses a number of security and privacy issues arising in position-based MANETs. models. We address the problem of position based security aware routing in consideration with better anonymity protection .
The course treats the following topics: - Relevant physical oceanography - Elements …
The course treats the following topics: - Relevant physical oceanography - Elements of marine geology (seafloor topography, acoustical properties of sediments and rocks) - Underwater sound propagation (ray acoustics, ocean noise) - Interaction of sound with the seafloor (reflection, scattering) - Principles of sonar (beamforming) - Underwater acoustic mapping systems (single beam echo sounding, multi-beam echo sounding, sidescan sonar) - Data analysis (refraction corrections, digital terrain modelling) - Applications (hydrographic survey planning and navigation, coastal engineering) - Current and future developments.
No restrictions on your remixing, redistributing, or making derivative works. Give credit to the author, as required.
Your remixing, redistributing, or making derivatives works comes with some restrictions, including how it is shared.
Your redistributing comes with some restrictions. Do not remix or make derivative works.
Most restrictive license type. Prohibits most uses, sharing, and any changes.
Copyrighted materials, available under Fair Use and the TEACH Act for US-based educators, or other custom arrangements. Go to the resource provider to see their individual restrictions.