This resource is a video abstract of a research paper created by …
This resource is a video abstract of a research paper created by Research Square on behalf of its authors. It provides a synopsis that's easy to understand, and can be used to introduce the topics it covers to students, researchers, and the general public. The video's transcript is also provided in full, with a portion provided below for preview:
"Like a symphony, the earliest moments of life play out with incredible precision. Take the fruit fly embryo. Unlike a human embryo, where a single cell becomes many through repeated rounds of cell division, the early embryo of the fruit fly starts as a single nucleus that then divides into thousands of nuclei, all within the same cell. During these divisions, the nuclei must navigate through the embryo to highly specific locations before they become separated into the thousands of cells that will eventually develop into an adult fly. A new report in Cell describes how these nuclei steer themselves to where they need to be. To uncover the mechanisms that drive nuclear positioning and cell cycle synchronization, the team developed state-of-the-art imaging and computational tools to manipulate and track cell cycle and cytoskeletal dynamics in early embryogenesis. Additionally, the team used optogenetic methods to manipulate cytoskeletal contractility with spatial and temporal accuracy..."
The rest of the transcript, along with a link to the research itself, is available on the resource itself.
This resource is a video abstract of a research paper created by …
This resource is a video abstract of a research paper created by Research Square on behalf of its authors. It provides a synopsis that's easy to understand, and can be used to introduce the topics it covers to students, researchers, and the general public. The video's transcript is also provided in full, with a portion provided below for preview:
"The trafficking of proteins into and out of the nucleus is central to cell function In fruit flies, the process also seems to determine the fate of neural stem cells in the larval central brain Neural stem cells are essential to neurogenesis, a two-step process in Drosophila The cells first form during embryogenesis At the end of neurogenesis, the cells divide terminally and exit the cell cycle, producing new neurons A build up of the protein Prospero in the nucleus initiates this exit But what causes this accumulation? Researchers report that Prospero uses RanGAP to shuttle across the nuclear envelope Eliminating RanGAP function doesn’t affect the nuclear import of Prospero, but rather its export out of the nucleus This suggests a drop in RanGAP levels could entrap Prospero in the nucleus, hinting that an intrinsic mechanism determines the fate of neural stem cells in Drosophila and perhaps other organisms as well Wu, D., et al..."
The rest of the transcript, along with a link to the research itself, is available on the resource itself.
This resource is a video abstract of a research paper created by …
This resource is a video abstract of a research paper created by Research Square on behalf of its authors. It provides a synopsis that's easy to understand, and can be used to introduce the topics it covers to students, researchers, and the general public. The video's transcript is also provided in full, with a portion provided below for preview:
"Breast cancer accounts for more than 6% of all cancer-related deaths worldwide; the main cause of death being metastasis to other tissues. One factor that leads to this spread is breast cancer’s resistance to chemotherapy. A recent study reveals a molecular target that could curb the persistent progression of breast cancer. The protein RelB was observed to be overexpressed in human breast cancer tissue promoting cancer cell proliferation by decreasing normally programmed cell death and increasing cell mobility. Genetically switching RelB expression off dramatically reduced and even prevented breast tumor growth in mice. RelB’s cancer-promoting functions are linked to its activation of the noncanonical NF-κB signaling pathway, which helps sustain breast cancer metastasis under low-estrogen conditions. Targeting this under-examined pathway could be one way to prevent the spread of breast cancer cells and thereby boost anti-cancer therapies for millions of patients around the globe..."
The rest of the transcript, along with a link to the research itself, is available on the resource itself.
This is a REVIEW for South Carolina Biology EOC Test - Mitosis …
This is a REVIEW for South Carolina Biology EOC Test - Mitosis and The Cell Cycle. The human body is composed of trillions of cells. Each cell has a specific purpose to help carry out life. Many of these trillions of cells will wear out and need replaced. This essential process for life is called mitosis. In this seminar you will explore, compare, and reflect on how cells reproduce and make copies of themselves.
Students will learn the parts of the cell cycle by modeling it. …
Students will learn the parts of the cell cycle by modeling it. Students use various techniques to create a story board that models the phases in the cell cycle. Each part of the story board will be documented using a digital camera. Once the pictures are completed, the students will upload to Windows Movie Maker and create a short stop motion animation of the cell cycle.
No restrictions on your remixing, redistributing, or making derivative works. Give credit to the author, as required.
Your remixing, redistributing, or making derivatives works comes with some restrictions, including how it is shared.
Your redistributing comes with some restrictions. Do not remix or make derivative works.
Most restrictive license type. Prohibits most uses, sharing, and any changes.
Copyrighted materials, available under Fair Use and the TEACH Act for US-based educators, or other custom arrangements. Go to the resource provider to see their individual restrictions.