Updating search results...

Search Resources

53 Results

View
Selected filters:
  • polymers
Investigating Polymers: Comparing Two Liquid Glue Based Polymers
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

In this fun hands-on activity, students will create two different polymers, similar to Flubber and Silly Putty, using Elmers glue, liquid laundry starch, and Borax. Students will then compare the properties of the two polymers.

Subject:
Chemistry
Physical Science
Material Type:
Activity/Lab
Provider:
Science Education Resource Center (SERC) at Carleton College
Provider Set:
Pedagogy in Action
Author:
Linda Ruehle
Date Added:
08/16/2012
KOHLENSTOFF (2014)
Only Sharing Permitted
CC BY-NC-ND
Rating
0.0 stars

Alle uns bekannten Lebensformen sind auf Kohlenstoff angewiesen. Diese Mini Lecture führt in das chemisch vielseitigste Element ein, das sowohl als Energiequelle als auch als Baustein essentiell für alles Leben auf der Erde ist. Auszüge aus den in Lindau gehaltenen Vorträgen der Chemiker Robert Curl und Karl Ziegler erläutern die Struktur des symmetrischen C60-Moleküls sowie den Ziegler-Natta-Prozess zur Herstellung von Polymeren.

Subject:
Chemistry
Physical Science
Material Type:
Lecture
Provider:
Lindau Nobel Laureate Meetings
Provider Set:
Mini Lectures
Date Added:
04/13/2018
Let's Make Silly Putty
Read the Fine Print
Educational Use
Rating
0.0 stars

Students make two different formulations of imitation Silly Putty with varying degrees of cross-linking. They witness how changes in the degree of cross-linking influence the putty properties.

Subject:
Applied Science
Engineering
Genetics
Life Science
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Cherelle M. Bishop
Jeramy Jasmann
Kate McDonnell
Melissa M. Reynolds
Michael A. de Miranda
Date Added:
09/18/2014
Let the Blood Flow
Read the Fine Print
Educational Use
Rating
0.0 stars

Students work as biomedical engineers to find liquid solutions that can clear away polyvinyl acetate polymer "blood clots" in model arteries (made of clear, flexible tubing). Teams create samples of the "blood clot" polymer with different concentrations to discover the concentration of the model clot and then test a variety of liquids to determine which most effectively breaks down the model blood clot. Students learn the importance of the testing phase in the engineering design process, because they are only given one chance to present the team's solution and apply it to the model blood clot.

Subject:
Applied Science
Education
Engineering
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Ann McCabe
Azim Laiwalla
Carleigh Samson
Date Added:
09/18/2014
Mapping the viscoelastic properties of polymers using nanoindentation
Unrestricted Use
CC BY
Rating
0.0 stars

This resource is a video abstract of a research paper created by Research Square on behalf of its authors. It provides a synopsis that's easy to understand, and can be used to introduce the topics it covers to students, researchers, and the general public. The video's transcript is also provided in full, with a portion provided below for preview:

"Many materials scientists are in the business of “feeling” things out. Using a testing method known as nanoindentation, they’re able to tell how hard or strong a material is (and, to some extent, what it’s made of) much the same way we do—by pressing down on it. Now, researchers at the National Institute of Standards and Technology have expanded the technique to include an important material behavior previously inaccessible to these robotic fingertips: viscoelasticity. This new ability could help researchers better predict how up-and-coming supermaterials such as carbon nanotube-polymer composites behave, leading to the design of stronger and safer materials. Think about the last time you shopped for a new mattress. At some point, you probably considered going with the memory foam option (swayed, perhaps, by its billing as a NASA-designed material). What makes memory foam able to contour to your body is its viscoelastic properties..."

The rest of the transcript, along with a link to the research itself, is available on the resource itself.

Subject:
Applied Science
Engineering
Material Type:
Diagram/Illustration
Reading
Provider:
Research Square
Provider Set:
Video Bytes
Date Added:
11/21/2020
Materials in Today's World
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

What materials have you touched today? In today's society, virtually every segment of our personal and professional lives is influenced by the limitations, availability, and economic considerations of the materials used. Through readings and science documentaries, this course will show you how and why certain materials are selected for different applications and how the processing, structure, properties, and performance of materials are intrinsically linked. You will be introduced to the basic science and technology of materials, how the world has been shaped by materials, and how knowledge of materials can be used to understand modern materials and the development of new ones.

Subject:
Physical Science
Material Type:
Full Course
Provider:
Penn State College of Earth and Mineral Sciences
Author:
Ron Redwing
Date Added:
10/07/2019
Mealworms use ancient plant polymer digestion mechanisms to break down synthetic plastics
Unrestricted Use
CC BY
Rating
0.0 stars

This resource is a video abstract of a research paper created by Research Square on behalf of its authors. It provides a synopsis that's easy to understand, and can be used to introduce the topics it covers to students, researchers, and the general public. The video's transcript is also provided in full, with a portion provided below for preview:

"Global urbanization is driving a flood of plastic pollution, and we desperately need ways to break these plastics down. And plastic-eating insects may be able to help. Such insects leverage their gut microbes to degrade plastic polymers, but little is known about how insects acquired this ability. To learn more, researchers examined the mealworm gut microbiome’s response to different diets. The bonds in synthetic plastic polymers can resemble those in natural polymers. Polystyrene, for example, has bonds like lignin, a polymer found in all vascular plants. So, the researchers fed mealworms polystyrene or corn straw, which is high in lignin. Neither experimental diet had a negative effect on the mealworms’ survival compared to a normal cabbage diet. Both polymer-heavy diets led to similar gut microbial community structures, metabolic pathways, and enzymatic profiles..."

The rest of the transcript, along with a link to the research itself, is available on the resource itself.

Subject:
Biology
Life Science
Material Type:
Diagram/Illustration
Reading
Provider:
Research Square
Provider Set:
Video Bytes
Date Added:
05/15/2023
Mechanical Behavior of Materials
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

Here we will learn about the mechanical behavior of structures and materials, from the continuum description of properties to the atomistic and molecular mechanisms that confer those properties to all materials. We will cover elastic and plastic deformation, creep, fracture and fatigue of materials including crystalline and amorphous metals, semiconductors, ceramics, and (bio)polymers, and will focus on the design and processing of materials from the atomic to the macroscale to achieve desired mechanical behavior. We will cover special topics in mechanical behavior for material systems of your choice, with reference to current research and publications.

Subject:
Applied Science
Engineering
Physical Science
Physics
Material Type:
Full Course
Provider Set:
MIT OpenCourseWare
Author:
van Vliet, Krystyn
Date Added:
02/01/2008
Mechanics and Materials II
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This course provides Mechanical Engineering students with an awareness of various responses exhibited by solid engineering materials when subjected to mechanical and thermal loadings; an introduction to the physical mechanisms associated with design-limiting behavior of engineering materials, especially stiffness, strength, toughness, and durability; an understanding of basic mechanical properties of engineering materials, testing procedures used to quantify these properties, and ways in which these properties characterize material response; quantitative skills to deal with materials-limiting problems in engineering design; and a basis for materials selection in mechanical design.

Subject:
Applied Science
Engineering
Material Type:
Full Course
Provider Set:
MIT OpenCourseWare
Author:
Anand, Lallit
Parks, David
Date Added:
02/01/2004
Molecular Models and 3D Printing
Read the Fine Print
Educational Use
Rating
0.0 stars

Students are challenged to use computer-aided design (CAD) software to create “complete” 3D-printed molecule models that take into consideration bond angles and lone-pair positioning. To begin, they explore two interactive digital simulations: “build a molecule” and “molecule shapes.” This aids them in comparing and contrasting existing molecular modeling approaches—ball-and-stick, space-filling, and valence shell electron pair repulsion (VSEPR)—so as to understand their benefits and limitations. In order to complete a worksheet that requires them to draw Lewis dot structures, they determine the characteristics and geometries (valence electrons, polar bonds, shape type, bond angles and overall polarity) of 12 molecules. They also use molecular model kits. These explorations and exercises prepare them to design and 3D print their own models to most accurately depict molecules. Pre/Post quizzes, a step-by-step Blender 3D software tutorial handout and a worksheet are provided.

Subject:
Chemistry
Physical Science
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
Activities
Author:
Conrad Faine
Kerlyn Prada
Date Added:
03/14/2017
Molecular Principles of Biomaterials
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This course covers the analysis and design at a molecular scale of materials used in contact with biological systems, including biotechnology and biomedical engineering. Topics include molecular interactions between bio- and synthetic molecules and surfaces; design, synthesis, and processing approaches for materials that control cell functions; and application of state-of-the-art materials science to problems in tissue engineering, drug delivery, vaccines, and cell-guiding surfaces.

Subject:
Applied Science
Biology
Engineering
Life Science
Material Type:
Full Course
Provider Set:
MIT OpenCourseWare
Author:
Irvine, Darrell
Date Added:
02/01/2006
Molecular Self-Assembly
Read the Fine Print
Rating
0.0 stars

In this activity, students interact with 12 models to observe emergent phenomena as molecules assemble themselves. Investigate the factors that are important to self-assembly, including shape and polarity. Try to assemble a monolayer by "pushing" the molecules to the substrate (it's not easy!). Rotate complex molecules to view their structure. Finally, create your own nanostructures by selecting molecules, adding charges to them, and observing the results of self-assembly.

Subject:
Applied Science
Chemistry
Education
Engineering
Life Science
Physical Science
Physics
Technology
Material Type:
Activity/Lab
Data Set
Interactive
Lecture Notes
Provider:
Concord Consortium
Provider Set:
Concord Consortium Collection
Author:
The Concord Consortium
Date Added:
12/11/2011
The Optimization of Slime
Read the Fine Print
Educational Use
Rating
0.0 stars

Using their knowledge of the phases of matter, the scientific method, and polymers, student teams work as if they are chemical engineers to optimize the formula for slime. Hired by the fictional company, Slime Productions, students are challenged to modify the chemical composition of the basic formula for slime to maximize its "bounce factor."

Subject:
Applied Science
Chemistry
Engineering
Physical Science
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Leslie Stiles
Date Added:
09/18/2014
Organic Chemistry Videos
Only Sharing Permitted
CC BY-NC-ND
Rating
0.0 stars

Learn about organic chemistry through engaging, bitesize animated videos. They are organised into these chapters: crude oil, functional groups, alkanes and alkenes, alcohols, carboxylic acids and esters, polymers, proteins, carbohydrates, organic chemistry in everyday life and nanoscience.

Subject:
Physical Science
Material Type:
Lecture
Date Added:
01/12/2016
Organic Optoelectronics
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

The course examines optical and electronic processes in organic molecules and polymers that govern the behavior of practical organic optoelectronic devices. Electronic structure of a single organic molecule is used as a guide to the electronic behavior of organic aggregate structures. Emphasis is placed on the use of organic thin films in active organic devices including organic LEDs, solar cells, photodetectors, transistors, chemical sensors, memory cells, electrochromic devices, as well as xerography and organic non-linear optics. How to reach the ultimate miniaturization limit of molecular electronics and related nanoscale patterning techniques of organic materials will also be discussed. The class encompasses three laboratory sessions during which the students will practice the use of select vacuum and non-vacuum organic deposition techniques by making their own active organic devices.

Subject:
Applied Science
Biology
Career and Technical Education
Electronic Technology
Engineering
Life Science
Material Type:
Full Course
Provider Set:
MIT OpenCourseWare
Author:
Bulovic, Vladimir
Date Added:
02/01/2003
Plastic Polymers: Investigating Their Flexibility
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This is a short unit (including hands on activities) on polymers and plastics to expand our study of physical/chemical properties and changes.

Subject:
Chemistry
Physical Science
Material Type:
Activity/Lab
Provider:
Science Education Resource Center (SERC) at Carleton College
Provider Set:
Pedagogy in Action
Author:
Gloria Brandt
Date Added:
08/16/2012
The Plastic Test
Read the Fine Print
Educational Use
Rating
0.0 stars

After a brief history of plastics, students look more closely as some examples from the abundant types of plastics found in our day-to-day lives. They are introduced to the mechanical properties of plastics, including their stress-strain relationships, which determine their suitability for different industrial and product applications. These physical properties enable plastics to be fabricated into a wide range of products. Students learn about the different roles that plastics play in our lives, Young's modulus, and the effects that plastics have on our environment. Then students act as industrial engineers, conducting tests to compare different plastics and performing a cost-benefit analysis to determine which are the most cost-effective for a given application, based on their costs and measured physical properties.

Subject:
Applied Science
Engineering
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Joseph Frezzo
Peter James Baker
Sharon Holiday
Date Added:
10/14/2015
Polymer Science Laboratory
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

Experiments in this class are broadly aimed at acquainting students with the range of properties of polymers, methods of synthesis, and physical chemistry. Some examples of laboratory work include solution polymerization of acrylamide, bead polymerization of divinylbenzene, and interfacial polymerization of nylon 6,10. Evaluation of networks by tensile and swelling experiments, rheology of polymer solutions and suspensions, and physical properties of natural and silicone rubber are also covered.

Subject:
Applied Science
Chemistry
Engineering
Physical Science
Material Type:
Full Course
Provider Set:
MIT OpenCourseWare
Author:
Breindel, Harlan
Hammond, Paula
Date Added:
09/01/2005
Polymers & Plastics  - Classification & Models
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This is an activity on polymers and plastics to expand our study of physical/chemical properties and changes.

Subject:
Chemistry
Physical Science
Material Type:
Activity/Lab
Provider:
Science Education Resource Center (SERC) at Carleton College
Provider Set:
Pedagogy in Action
Author:
Amy Fahey
Date Added:
08/16/2012