Students simulate disease transmission by collecting data based on their proximity to …
Students simulate disease transmission by collecting data based on their proximity to other students. One option for measuring proximity is by having Bluetooth devices "discover" each other. After data is collected, students apply graph theory to analyze it, and summarize their data and findings in lab report format. Students learn real-world engineering applications of graph theory and see how numerous instances of real-world relationships can be more thoroughly understood by applying graph theory. Also, by applying graph theory the students are able to come up with possible solutions to limit the spread of disease. The activity is intended to be part of a computer science curriculum and knowledge of the Java programming language is required. To complete the activity, a computer with Java installed and appropriate editing software is needed.
This exploration can be done in class near the beginning of a …
This exploration can be done in class near the beginning of a unit on graphing parabolas. Students need to be familiar with intercepts, and need to know what the vertex is.
The task is an introduction to the graphing of exponential functions. The …
The task is an introduction to the graphing of exponential functions. The first part asks students to use technology to experiment with the two parameters defining an exponential function, with little guidance. Since it is important for the second part, teachers should encourage students to try a wide range of values, and in particular, values of b both less than and greater than 1. The task includes a Desmos app, in which students can make use of sliders to more viscerally see the effect of changing a and b separately.
The goal of this task is to get students to focus on …
The goal of this task is to get students to focus on the shape of the graph of the equation y=ex and how this changes depending on the sign of the exponent and on whether the exponential is in the numerator or denominator. It is also intended to develop familiarity, in the case of f and k, with the functions which are used in logistic growth models, further examined in ``Logistic Growth Model, Explicit Case'' and ``Logistic Growth Model, Abstract Verson.''
This is the first unit in the Algebra II curriculum and is …
This is the first unit in the Algebra II curriculum and is fundamental for the rest of the year. During this course students study many different functions and their key features. Students will compare, contrast, and make generalizations about these functions using the key features and proper notation. This unit ensures that students can identify each type of key feature properly throughout the rest of the year.Objectives: Students will express and interpret intervals using both interval and inequality notation.Students will be able to express the domain and range of graphs using both interval and inequality notation.Students will be able to find the x and y intercepts of a function from a graph or from a linear equation.Students will be able to identify extrema, increasing, decreasing and constant intervals of a graph using interval notation.Students will be able to write the end behavior for any given graph.Technology Utilized: ● Desmos - This is an online graphing tool that can be used to make basic graphs as well as premade teacher bundles with student investigations. In this unit I have taken some of the premade investigations and edited them to meet my classroom needs.● Answer Garden - This tool will be used to brainstorm key features at the beginning of the unit and to assess student’s prior knowledge.● Kahoot - This tool is used as a classroom formative assessment. Students must be all on the same question which can also elicit discussion and show misconceptions with instant feedback.● Google Forms - This tool is used for short assessments, exit tickets, and graded homework assignments. The ability for multiple types of questions and self checking quiz option make this an easy way to quickly assess students and give feedback.
The intent of clarifying statements is to provide additional guidance for educators …
The intent of clarifying statements is to provide additional guidance for educators to communicate the intent of the standard to support the future development of curricular resources and assessments aligned to the 2021 math standards. Clarifying statements can be in the form of succinct sentences or paragraphs that attend to one of four types of clarifications: (1) Student Experiences; (2) Examples; (3) Boundaries; and (4) Connection to Math Practices.
The purpose of this lesson is for students to discover the connection …
The purpose of this lesson is for students to discover the connection between the algebraic and the graphical structure of polynomial functions. This lesson leads to students being able to sketch a graph by identifying the end behavior, intercepts, and multiplicities from a given polynomial equation. It also leads to students being able to write a possible equation by determining the sign of the leading coefficient, minimum possible degree, x-intercepts and y-intercept from a given polynomial graph.
Using Avida-ED freeware, students control a few factors in an environment populated …
Using Avida-ED freeware, students control a few factors in an environment populated with digital organisms, and then compare how changing these factors affects population growth. They experiment by altering the environment size (similar to what is called carrying capacity, the maximum population size that an environment can normally sustain), the initial organism gestation rate, and the availability of resources. How systems function often depends on many different factors. By altering these factors one at a time, and observing the results, students are able to clearly see the effect of each one.
Adult education classrooms are commonly comprised of learners who have widely disparate …
Adult education classrooms are commonly comprised of learners who have widely disparate levels of mathematical problem-solving skills. This is true regardless of what level a student may be assessed at when entering an adult education program or what level class they are placed in. Providing students with differentiated instruction in the form of Push and Support cards is one way to level this imbalance, keeping all students engaged in one high-cognitive task that supports and encourages learners who are stuck, while at the same time, providing extensions for students who move through the initial phase of the task quickly. Thus, all students are continually moving forward during the activity, and when the task ends, all students have made progress in their journey towards developing conceptual understanding of mathematical ideas along with a productive disposition, belief in one’s own ability to successfully engage with mathematics.
This lesson unit is intended to help teachers assess how well students …
This lesson unit is intended to help teachers assess how well students are able to translate between graphs and algebraic representations of polynomials. In particular, this unit aims to help you identify and assist students who have difficulties in: recognizing the connection between the zeros of polynomials when suitable factorizations are available, and graphs of the functions defined by polynomials; and recognizing the connection between transformations of the graphs and transformations of the functions obtained by replacing f(x) by f(x + k), f(x) + k, -f(x), f(-x).
No restrictions on your remixing, redistributing, or making derivative works. Give credit to the author, as required.
Your remixing, redistributing, or making derivatives works comes with some restrictions, including how it is shared.
Your redistributing comes with some restrictions. Do not remix or make derivative works.
Most restrictive license type. Prohibits most uses, sharing, and any changes.
Copyrighted materials, available under Fair Use and the TEACH Act for US-based educators, or other custom arrangements. Go to the resource provider to see their individual restrictions.