This module addresses the problem of how to determine the size of …
This module addresses the problem of how to determine the size of a ton of rocks of a given composition and invites the student to figure out how to solve the problem.
(Note: this resource was added to OER Commons as part of a batch upload of over 2,200 records. If you notice an issue with the quality of the metadata, please let us know by using the 'report' button and we will flag it for consideration.)
This module addresses the real problem of determining the density of the …
This module addresses the real problem of determining the density of the Earth and invites the student to figure out how to solve the problem.
(Note: this resource was added to OER Commons as part of a batch upload of over 2,200 records. If you notice an issue with the quality of the metadata, please let us know by using the 'report' button and we will flag it for consideration.)
Analyzing three-dimensional orientation data using a stereonet is an important component of …
Analyzing three-dimensional orientation data using a stereonet is an important component of any structural geology course, ideally helping students to visualize structural geometry and serving as a springboard for more advanced topics such as fault and fold kinematics. Rather than teaching my students about stereonets using tracing paper and pushpins, I use the newest version of Rick Allmendinger and NÃstor Cardozo's OSXStereonet program, which includes elegant, interactive three-dimensional view options. Simultaneously, I teach students transformation of orientation data between spherical coordinates and Cartesian coordinates, using MATLAB functions to carry out the conversions. We simultaneously solve problems involving orientation data using OSXStereonet and MATLAB, allowing students to gain an understanding of the mathematics that OSXStereonet carries out behind the scenes while using the visualization capabilities of OSXStereonet to reinforce the three-dimensional concepts.
(Note: this resource was added to OER Commons as part of a batch upload of over 2,200 records. If you notice an issue with the quality of the metadata, please let us know by using the 'report' button and we will flag it for consideration.)
Students are presented with the following challenge: their new school is under …
Students are presented with the following challenge: their new school is under construction and the architect accidentally put the music room next to the library. Students need to design a room that will absorb the most amount of sound so that the music does not disturb the library. Students use a box as a proxy for the room need to create a design that will decrease the sound that is coming from the outside of the box. To evaluate this challenge, students use a speaker within the box and a decibel meter outside the box to measure the effectiveness of their design.
The Smith College Sedimentology course is an example of a course structured …
The Smith College Sedimentology course is an example of a course structured around projects, most of which are field based. The projects are carefully designed to take advantage of the local geology and to address a variety of topics. Of utmost importance in designing individual projects is demonstrating the relevance of the work the students do. Therefore the projects are designed to mimic real-life situations: for example, the students address concerns of a local farmer, or have roles as field conference organizers and collaborators (with paleontologists) on a multidisciplinary research project.
(Note: this resource was added to OER Commons as part of a batch upload of over 2,200 records. If you notice an issue with the quality of the metadata, please let us know by using the 'report' button and we will flag it for consideration.)
Students begin by following instructions to connect a Sunfounder Ultrasonic Sensor and …
Students begin by following instructions to connect a Sunfounder Ultrasonic Sensor and an Arduino Microcontroller. Once they have them set up, students calibrate the sensor and practice using it. Students are then given an engineering design problem: to build a product that will use the ultrasonic sensors for a purpose that they all specify. Students will have to work together to design and test their product, and ultimately present it to their classmates.
Dr. Thomas Hickson (University of St. Thomas) and Karen Campbell (National Center …
Dr. Thomas Hickson (University of St. Thomas) and Karen Campbell (National Center for Earth Surface Dynamics) developed a small, two-dimensional deltaic sedimentation model for the Teaching Sedimentary Geology workshop. This page provides a complete exercise and construction plans to build your own desktop delta.
(Note: this resource was added to OER Commons as part of a batch upload of over 2,200 records. If you notice an issue with the quality of the metadata, please let us know by using the 'report' button and we will flag it for consideration.)
Research-grade Global Positioning Systems (GPS) allow students to deduce that Earth's crust …
Research-grade Global Positioning Systems (GPS) allow students to deduce that Earth's crust is changing shape in measurable ways. From data gathered by EarthScope's Plate Boundary Observatory, students discover that the Pacific Northwest of the United States and coastal British Columbia -- the Cascadia region - are geologically active: tectonic plates move and collide; they shift and buckle; continental crust deforms; regions warp; rocks crumple, bend, and will break.
(Note: this resource was added to OER Commons as part of a batch upload of over 2,200 records. If you notice an issue with the quality of the metadata, please let us know by using the 'report' button and we will flag it for consideration.)
A homework/classroom activity where students collect historical earthquake information and use it …
A homework/classroom activity where students collect historical earthquake information and use it to forecast the probability of larger earthquakes.
(Note: this resource was added to OER Commons as part of a batch upload of over 2,200 records. If you notice an issue with the quality of the metadata, please let us know by using the 'report' button and we will flag it for consideration.)
This activity is divided into two parts - 1) Using data from …
This activity is divided into two parts - 1) Using data from primary literature to calculate mantle potential temperature beneath a ridge and an oceanic island ("hotspot"). 2) Using the transition zone thickness observed beneath a "hotspot" (Hawaii) to analyze contributions from anomalous temperature and composition. In addition to the student activity sheets, an Excel key, instructor notes, and student handouts are included below.
(Note: this resource was added to OER Commons as part of a batch upload of over 2,200 records. If you notice an issue with the quality of the metadata, please let us know by using the 'report' button and we will flag it for consideration.)
This activity is a multi-part lab designed to allow students to develop …
This activity is a multi-part lab designed to allow students to develop their ability to visualize folds in 3-dimensions using Visible Geology and stereonets.
(Note: this resource was added to OER Commons as part of a batch upload of over 2,200 records. If you notice an issue with the quality of the metadata, please let us know by using the 'report' button and we will flag it for consideration.)
This resource was created by Sarah Davenport in collaboration with Tina Williams …
This resource was created by Sarah Davenport in collaboration with Tina Williams as part of the 2019-20 ESU-NDE Digital Age Pedagogy Project. Educators worked with coaches to create Lesson Plans promoting both content area and digital age skills. This Lesson Plan is designed for 3rd grade General Education/Math.
The activity is designed to help students conceptualize the spatiotemporal relationships between …
The activity is designed to help students conceptualize the spatiotemporal relationships between erosion and deposition across a convex topography, which serves as a proxy for understanding rill and gully formation, knickpoint migration, valley excavation, and the interplay between sediment supply and accommodation across distributary features. The exercise utilizes simplistic flume observations and measurements to generate digital terrain models (DTMs) of generated topographies; by changing individual flume parameters between experimental runs (such as discharge, slope, and sediment type and moisture content), students are able to determine controls on sediment dispersion.
In this quantitative field activity, students collect field data on channel geometry, …
In this quantitative field activity, students collect field data on channel geometry, flow velocity, and bed materials. Using these data, they apply flow resistance equations and sediment transport relations to estimate the bankfull discharge and to determine if the flow is sufficient to mobilize the bed.
(Note: this resource was added to OER Commons as part of a batch upload of over 2,200 records. If you notice an issue with the quality of the metadata, please let us know by using the 'report' button and we will flag it for consideration.)
Through this lesson and its two associated activities, students are introduced to …
Through this lesson and its two associated activities, students are introduced to the use of geometry in engineering design, and conclude by making scale models of objects of their choice. The practice of developing scale models is often used in engineering design to analyze the effectiveness of proposed design solutions. In this lesson, students complete fencing (square) and fire pit (circle) word problems on two worksheets—which involves side and radius dimensions, perimeters, circumferences and areas—guiding them to discover the relationships between the side length of a square and its area, and the radius of a circle and its area. They also think of real-world engineering applications of the geometry concepts.
This short video and interactive assessment activity is designed to teach fifth …
This short video and interactive assessment activity is designed to teach fifth graders about distances between points on multiple routes (metric units).
No restrictions on your remixing, redistributing, or making derivative works. Give credit to the author, as required.
Your remixing, redistributing, or making derivatives works comes with some restrictions, including how it is shared.
Your redistributing comes with some restrictions. Do not remix or make derivative works.
Most restrictive license type. Prohibits most uses, sharing, and any changes.
Copyrighted materials, available under Fair Use and the TEACH Act for US-based educators, or other custom arrangements. Go to the resource provider to see their individual restrictions.