Updating search results...

Search Resources

10000 Results

View
Selected filters:
Aerial Photography and Mapping Lesson Plan: Images of Katrina
Read the Fine Print
Rating
0.0 stars

This activity from NOAA Ocean Service is about using aerial photographs to assess the impact of extreme weather events such as Hurricane Katrina. The activity features aerial views of Biloxi, MS post-Katrina and enables students to see evidence of the power of extreme weather on the environment.

Subject:
Geoscience
Physical Science
Material Type:
Activity/Lab
Provider:
CLEAN: Climate Literacy and Energy Awareness Network
Provider Set:
CLEAN: Climate Literacy and Energy Awareness Network
Author:
NOAA
Date Added:
10/27/2014
Aerial photo interpretation and mapping - Bayou Meda anticline, Arkansas
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

Students use aerial photography combined with field observation to interpret the geology of a megascopic anticline-syncline pair exposed in the Ouachita Mountains of central Arkansas. This project focuses on the integration of remotely-sensed data with direct observation to develop and test hypotheses regarding the geology and structure of a well-defined field area. Students construct a geological map and cross-section that synthesize their observations and illustrate the geology of the field area.

(Note: this resource was added to OER Commons as part of a batch upload of over 2,200 records. If you notice an issue with the quality of the metadata, please let us know by using the 'report' button and we will flag it for consideration.)

Subject:
Biology
Geology
Life Science
Physical Science
Material Type:
Activity/Lab
Provider:
Science Education Resource Center (SERC) at Carleton College
Provider Set:
Teach the Earth
Author:
Jamey Jones
Date Added:
09/09/2020
Aero and Officer Mike
Unrestricted Use
Public Domain
Rating
0.0 stars

This nonfiction story is about a partnership between a policeman, Officer Mike, and his partner, a police dog named Aero. Information about daily routine (work and breaks), Aero's special talents and Officer Mike's training and care of Aero is included.

Subject:
Arts and Humanities
Literature
Material Type:
Lesson Plan
Unit of Study
Provider:
Basal Alignment Project
Provider Set:
Tangipahoa Parish District
Author:
Joan Plummer Russell
Date Added:
09/01/2013
The Aerobatics of the Extra 260
Conditional Remix & Share Permitted
CC BY-NC
Rating
0.0 stars

The inverted ribbon cut maneuver is when a pilot flies an aerobatic plane toward a string spanning a runway between two poles held in place by two brave people.

Subject:
Applied Science
Physical Science
Material Type:
Reading
Provider:
National Air and Space Museum
Author:
National Air and Space Museum
Date Added:
10/05/2022
Aerodynamics
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This course extends fluid mechanic concepts from Unified Engineering to the aerodynamic performance of wings and bodies in sub/supersonic regimes. 16.100 generally has four components: subsonic potential flows, including source/vortex panel methods; viscous flows, including laminar and turbulent boundary layers; aerodynamics of airfoils and wings, including thin airfoil theory, lifting line theory, and panel method/interacting boundary layer methods; and supersonic and hypersonic airfoil theory. Course material varies each year depending upon the focus of the design problem.

Subject:
Applied Science
Engineering
Material Type:
Full Course
Provider:
MIT
Provider Set:
MIT OpenCourseWare
Author:
Darmofal, David
Date Added:
09/01/2005
Aerodynamics and Aircraft Performance
Unrestricted Use
CC BY
Rating
0.0 stars

Aerodynamics and Aircraft Performance, 3rd edition is a college undergraduate-level introductory textbook on aircraft aerodynamics and performance. This text is designed for a course in Aircraft Performance that is taught before the students have had any course in fluid mechanics, fluid dynamics, or aerodynamics. The text is meant to provide the essential information from these types of courses that is needed for teaching basic subsonic aircraft performance, and it is assumed that the students will learn the full story of aerodynamics in other, later courses. The text assumes that the students will have had a university level Physics sequence in which they will have been introduced to the most fundamental concepts of statics, dynamics, fluid mechanics, and basic conservation laws that are needed to understand the coverage that follows. It is also assumed that students will have completed first year university level calculus sequence plus a course in multi-variable calculus. Separate courses in engineering statics and dynamics are helpful but not necessary. Any student who takes a course using this text after completing courses in aerodynamics or fluid dynamics should find the chapters of this book covering those subjects an interesting review of the material.

The 236-page text was created specifically for use by undergraduate students in Aerospace Engineering and was based on Professor Marchman’s many years of experience teaching related subject matter as well as his numerous wind tunnel research projects related to aircraft aerodynamics and his personal experience as the owner and pilot of a general aviation airplane. It has been used at Virginia Tech and other universities.

Table of Contents
1. Introduction to Aerodynamics
2. Propulsion
3. Additional Aerodynamics Tools
4. Performance in Striaght and Level Flight
5. Altitude Change: Climb and Glide
6. Range and Endurance
7. Accelerated Performance: Takeoff and Landing
8. Accelerated Performance: Turns
9. The Role of Performance in Aircraft Design: Constraint Analysis
Appendix A: Airfoil Data

Instructors reviewing, adopting, or adapting parts or the whole of the text are requested to register their interest at: https://bit.ly/aerodynamics_interest.

978-1-949373-63-9 (PDF) http://hdl.handle.net/10919/96525
978-1-949373-64-6 (ePub) http://hdl.handle.net/10919/96525
978-1-949373-62-2 (HTML/Pressbooks) https://pressbooks.lib.vt.edu/aerodynamics

Subject:
Applied Science
Engineering
Material Type:
Textbook
Provider:
Virginia Tech
Provider Set:
VTech Works
Author:
James F. Marchman III
Date Added:
08/09/2021
Aerodynamics and Aircraft Performance, 3rd edition
Unrestricted Use
CC BY
Rating
0.0 stars

Short Description:
Aerodynamics and Aircraft Performance, 3rd edition Intended for undergraduates, this text provides “stand alone” coverage of basic, subsonic, aircraft performance preceded by an introduction to the basics of aerodynamics that will provide a background sufficient to the understanding of the subjects to be studied in aircraft performance. NewParaDownloadable versions of this book and further information are freely available at: http://hdl.handle.net/10919/96525NewParaDr. James F. Marchman III is Professor Emeritus of Aerospace and Ocean Engineering and a former Associate Dean of Engineering at Virginia Tech where he taught and conducted research in aerodynamics, aircraft performance, aircraft design and other areas over a 40 year career. NewParaInstructors reviewing, adopting, or adapting parts or the whole of the text are requested to register their interest at: https://bit.ly/aerodynamics_interest.

Long Description:
Aerodynamics and Aircraft Performance, 3rd edition is a college undergraduate-level introduction to aircraft aerodynamics and performance. The objective of this text is to provide a “stand alone” coverage of basic, subsonic, aircraft performance preceded by an introduction to the basics of aerodynamics that will provide a background sufficient to the understanding of the subjects to be studied in aircraft performance. This text is designed for a course in Aircraft Performance that is taught before the students have had any course in fluid mechanics, fluid dynamics, or aerodynamics. The text is meant to provide the essential information from these types of courses that is needed for teaching basic subsonic aircraft performance, and it is assumed that the students will learn the full story of aerodynamics in other, later courses. The text assumes that the students will have had a university level Physics sequence in which they will have been introduced to the most fundamental concepts of statics, dynamics, fluid mechanics, and basic conservation laws that are needed to understand the coverage that follows. It is also assumed that students will have completed first year university level calculus sequence plus a course in multi-variable calculus. Separate courses in engineering statics and dynamics are helpful but not necessary. Any student who takes a course using this text after completing courses in aerodynamics or fluid dynamics should find the chapters of this book covering those subjects an interesting review of the material

This is a nearly verbatim presentation of Dr. Marchman’s 3rd edition (2004) of the text with minor corrections to text and formulas, addition of machine-readable math, alt text, and redrawn figures. It is available in Pressbooks, PDF, and ePub.

Instructors reviewing, adopting, or adapting parts or the whole of the text are requested to register their interest at: https://bit.ly/aerodynamics_interest.

Downloadable versions of this book and further information are freely available at: http://hdl.handle.net/10919/96525

Word Count: 86443

ISBN: 978-1-949373-62-2

(Note: This resource's metadata has been created automatically by reformatting and/or combining the information that the author initially provided as part of a bulk import process.)

Subject:
Applied Science
Engineering
Material Type:
Textbook
Provider:
Virginia Tech
Author:
James F. Marchman III
Date Added:
08/06/2021
Aerodynamics of Viscous Fluids
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

The major focus of 16.13 is on boundary layers, and boundary layer theory subject to various flow assumptions, such as compressibility, turbulence, dimensionality, and heat transfer. Parameters influencing aerodynamic flows and transition and influence of boundary layers on outer potential flow are presented, along with associated stall and drag mechanisms. Numerical solution techniques and exercises are included.

Subject:
Applied Science
Engineering
Material Type:
Full Course
Provider:
MIT
Provider Set:
MIT OpenCourseWare
Author:
Drela, Mark
Merchant, Ali
Date Added:
09/01/2003
Aerogels in Action
Read the Fine Print
Educational Use
Rating
0.0 stars

Students experiment with a new material—aerogel. Aerogel is a synthetic (human-made) porous ultra-light (low-density) material, in which the liquid component of a gel is replaced with a gas. In this activity, student pairs use aerogel to simulate the environmental engineering application of cleaning up oil spills. In a simple and fun way, this activity incorporates density calculations, the material effects of surface area, and hydrophobic and hydrophilic properties.

Subject:
Chemistry
Physical Science
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Claudia K. Gunsch
Desiree L. Plata
Lauren K. Redfern
Osman Karatüm
Date Added:
10/14/2015
Aerospace Biomedical and Life Support Engineering
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This course introduces students to a quantitative approach to studying the problems of physiological adaptation in altered environments, especially microgravity and partial gravity environments. The course curriculum starts with an Introduction and Selected Topics, which provides background information on the physiological problems associated with human space flight, as well as reviewing terminology and key engineering concepts. Then curriculum modules on Bone Mechanics, Muscle Mechanics, Musculoskeletal Dynamics and Control, and the Cardiovascular System are presented. These modules start out with qualitative and biological information regarding the system and its adaptation, and progresses to a quantitative endpoint in which engineering methods are used to analyze specific problems and countermeasures. Additional course curriculum focuses on interdisciplinary topics, suggestions include extravehicular activity and life support. The final module consists of student term project work.

Subject:
Applied Science
Astronomy
Biology
Engineering
Health, Medicine and Nursing
Life Science
Physical Science
Material Type:
Full Course
Provider:
MIT
Provider Set:
MIT OpenCourseWare
Author:
Newman, Dava
Date Added:
02/01/2006
Aerospace College Readiness, Pre-employment, and Assembly
Conditional Remix & Share Permitted
CC BY-NC
Rating
0.0 stars

This series of courses and learning modules are designed to offer a two-quarter entry-level employment preparation or college readiness program targeting either employment in aerospace and advanced manufacturing or continuing education in a manufacturing program. The pre-employment program includes applied mathematics, blueprint reading, computer skills, manufacturing basics, English-as-a-second language for aerospace, and shop safety. OSHA 10 and OSHA 30 certification student handbooks, and a course outline for integrating WorkKeys into the program are included. An outline of assembly skills in drilling and riveting illustrate a specific entry level employment opportunity.

Subject:
Career and Technical Education
Material Type:
Full Course
Module
Provider:
Air Washington
Date Added:
01/01/2013
Aerospace Dynamics
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This undergraduate course builds upon the dynamics content of Unified Engineering, a sophomore course taught in the Department of Aeronautics and Astronautics at MIT. Vector kinematics are applied to translation and rotation of rigid bodies. Newtonian and Lagrangian methods are used to formulate and solve equations of motion. Additional numerical methods are presented for solving rigid body dynamics problems. Examples and problems describe applications to aircraft flight dynamics and spacecraft attitude dynamics.

Subject:
Applied Science
Astronomy
Engineering
Physical Science
Material Type:
Full Course
Provider:
MIT
Provider Set:
MIT OpenCourseWare
Author:
Deyst, John
How, Jonathan
Date Added:
02/01/2003
The Aerospace Industry
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This course meets weekly to discuss recent aerospace history and current events, in order to understand how they are responsible for the state of the aerospace industry. With invited subject matter experts participating in nearly every session, students have an opportunity to hone their insight through truly informed discussion. The aim of the course is to prepare junior and senior level students for their first industry experiences.

Subject:
Arts and Humanities
Business and Communication
Economics
History
Management
Social Science
Material Type:
Full Course
Provider:
MIT
Provider Set:
MIT OpenCourseWare
Author:
Craig, Jennifer
Lechner, Barbara
Murman, Earll
Date Added:
02/01/2004
Aerospace Mechanics of Materials
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

Welcome to this course of Aerospace Mechanics of Materials. We are happy that you chose to join us on this exciting journey. This course deals with basic material and geometry dependent analysis of structures. In this course, you will investigate how these material properties, in combination with structural geometries, affect the design and performance of basic structural elements under axial, torsion, bending and shear loading.

We have divided this course into eight different subjects and a review chapter. In those subject, you will find video lectures and readings, where the concepts and theory will be explained; examples, where we will solve a problem for you, so you can reinforce the concepts you have learned; and exercises, that will allow you to test your knowledge.

Subject:
Applied Science
Engineering
Material Type:
Full Course
Author:
Dr. Calvin Rans
Dr. Sofia Teixeira de Freitas
Date Added:
07/30/2018
Aerospace Structures
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

Aerospace Structures by Eric Raymond Johnson is a 600+ page text and reference book for junior, senior, and graduate-level aerospace engineering students. The text begins with a discussion of the aerodynamic and inertia loads acting on aircraft in symmetric flight and presents a linear theory for the status and dynamic response of thin-walled straight bars with closed and open cross-sections. Isotropic and fiber-reinforced polymer (FRP) composite materials including temperature effects are modeled with Hooke’s law. Methods of analyses are by differential equations, Castigliano’s theorems, the direct stiffness method, the finite element method, and Lagrange’s equations. There are numerous examples for the response axial bars, beams, coplanar trusses, coplanar frames, and coplanar curved bars. Failure initiation by the von Mises yield criterion, buckling, wing divergence, fracture, and by Puck’s criterion for FRP composites are presented in the examples.

Resources
PDFs (book and chapter-level)
Problem sets: http://hdl.handle.net/10919/104169
LaTeX sourcefiles: Expected spring 2022
Print (Softcover. Does not include appendix): https://www.amazon.com/dp/1949373444.

Professors, if you are reviewing this book for adoption in your course, please let us know here: http://bit.ly/interest-aerospace-structures. Instructors reviewing, adopting, or adapting parts or the whole of the text are especially encouraged to sign up.

Subject:
Applied Science
Engineering
Material Type:
Textbook
Provider:
Virginia Tech
Provider Set:
VTech Works
Author:
Eric R. Johnson
Date Added:
03/21/2022