Updating search results...

Search Resources

1272 Results

View
Selected filters:
  • chemistry
Conceptual Chemistry
Unrestricted Use
CC BY
Rating
0.0 stars

Conceptual Chemistry is a year-long course based on CK-12 OER instructional material and supplemented with limited commercially-available materials. The course is project-based, argument-driven inquiry. Each quarter begins with presentation of an intriguing phenomenon, followed by an essential question about the phenomenon, and a project centered on answering that essential question. Throughout the quarter, students conduct research and investigations to answer portions of the question. Each unit has a student "Task" at the end that serves as an assessment of the unit's concepts. At the end of each quarter, students assemble all of the unit tasks and synthesize a personal final project that answers the essential question in a personal context chosen by the student.

Subject:
Physical Science
Material Type:
Full Course
Date Added:
07/02/2018
Concord Consortium: Atomic Structure
Read the Fine Print
Rating
0.0 stars

This interactive, scaffolded activity allows students to build an atom within the framework of a newer orbital model. It opens with an explanation of why the Bohr model is incorrect and provides an analogy for understanding orbitals that is simple enough for grades 8-9. As the activity progresses, students build atoms and ions by adding or removing protons, electrons, and neutrons. As changes are made, the model displays the atomic number, net charge, and isotope symbol. Try the "Add an Electron" page to build electrons around a boron nucleus and see how electrons align from lower-to-higher energy. This item is part of the Concord Consortium, a nonprofit research and development organization dedicated to transforming education through technology. The Concord Consortium develops deeply digital learning innovations for science, mathematics, and engineering. The models are all freely accessible. Users may register for additional free access to capture data and store student work products.

Subject:
Applied Science
Chemistry
Physical Science
Physics
Technology
Material Type:
Lesson
Provider:
Concord Consortium
Provider Set:
Concord Consortium Collection
Author:
The Concord Consortium
Date Added:
05/06/2011
Concord Consortium: Chemical Bonds
Read the Fine Print
Rating
0.0 stars

This interactive activity helps learners visualize the role of electrons in the formation of ionic and covalent chemical bonds. Students explore different types of chemical bonds by first viewing a single hydrogen atom in an electric field model. Next, students use sliders to change the electronegativity between two atoms -- a model to help them understand why some atoms are attracted. Finally, students experiment in making their own models: non-polar covalent, polar covalent, and ionic bonds. This item is part of the Concord Consortium, a nonprofit research and development organization dedicated to transforming education through technology.

Subject:
Applied Science
Chemistry
Physical Science
Physics
Technology
Material Type:
Lesson
Provider:
Concord Consortium
Provider Set:
Concord Consortium Collection
Author:
National Science Foundation
The Concord Consortium
Date Added:
05/16/2011
Concord Consortium: Electric Current
Read the Fine Print
Rating
0.0 stars

This 90-minute activity features six interactive molecular models to explore the relationships among voltage, current, and resistance. Students start at the atomic level to explore how voltage and resistance affect the flow of electrons. Next, they use a model to investigate how temperature can affect conductivity and resistivity. Finally, they explore how electricity can be converted to other forms of energy. The activity was developed for introductory physics courses, but the first half could be appropriate for physical science and Physics First. The formula for Ohm's Law is introduced, but calculations are not required. This item is part of the Concord Consortium, a nonprofit research and development organization dedicated to transforming education through technology. The Concord Consortium develops deeply digital learning innovations for science, mathematics, and engineering.

Subject:
Applied Science
Chemistry
Education
Engineering
Physical Science
Physics
Technology
Material Type:
Activity/Lab
Data Set
Diagram/Illustration
Interactive
Lecture Notes
Provider:
Concord Consortium
Provider Set:
Concord Consortium Collection
Author:
National Science Foundation
The Concord Consortium
Date Added:
03/10/2013
Concord Consortium: Excited States and Photons
Read the Fine Print
Rating
0.0 stars

This concept-building activity contains a set of sequenced simulations for investigating how atoms can be excited to give off radiation (photons). Students explore 3-dimensional models to learn about the nature of photons as "wave packets" of light, how photons are emitted, and the connection between an atom's electron configuration and how it absorbs light. Registered users are able to use free data capture tools to take snapshots, drag thumbnails, and submit responses. This item is part of the Concord Consortium, a nonprofit research and development organization dedicated to transforming education through technology.

Subject:
Applied Science
Chemistry
Education
Engineering
Life Science
Mathematics
Physical Science
Physics
Technology
Material Type:
Activity/Lab
Data Set
Interactive
Lecture Notes
Provider:
Concord Consortium
Provider Set:
Concord Consortium Collection
Author:
National Science Foundation
The Concord Consortium
Date Added:
08/21/2012
Concord Consortium: Making and Breaking Bonds
Read the Fine Print
Rating
0.0 stars

In this interactive activity, learners explore factors that cause atoms to form (or break) bonds with each other. The first simulation depicts a box containing 12 identical atoms. Using a slider to add heat, students can see the influence of temperature on formation of diatomic bonds. Simulations #2 and #3 introduce learners to reactions involving two types of atoms. Which atom forms a diatomic molecule more easily, and why? The activity concludes as students explore paired atoms (molecules). In this simulation they compare the amount of energy needed to break the molecular bonds to the energy needed to form the bonds. This item is part of the Concord Consortium, a nonprofit research and development organization dedicated to transforming education through technology.

Subject:
Applied Science
Chemistry
Physical Science
Physics
Technology
Material Type:
Lesson
Provider:
Concord Consortium
Provider Set:
Concord Consortium Collection
Author:
National Science Foundation
The Concord Consortium
Date Added:
05/16/2011
Concord Consortium: Probability Clouds
Read the Fine Print
Rating
0.0 stars

In this interactive activity, learners build computer models of atoms by adding or removing electrons, protons, and neutrons. It presents the orbital model of an atom: a nucleus consisting of protons and neutrons with electrons surrounding it in regions of high probability called orbitals. Guided tasks are provided, such as constructing a lithium atom and a carbon-12 atom in the fewest possible steps. The activity concludes with a model for building a charged hydrogen atom (an ion). Within each task, students take snapshots of their work product and answer probative questions. This item is part of the Concord Consortium, a nonprofit research and development organization dedicated to transforming education through technology.

Subject:
Applied Science
Chemistry
Engineering
Physical Science
Physics
Technology
Material Type:
Lesson
Provider:
Concord Consortium
Provider Set:
Concord Consortium Collection
Author:
National Science Foundation
The Concord Consortium
Date Added:
05/17/2011
Concord Consortium: Solar Oven
Read the Fine Print
Rating
0.0 stars

Elementary grade students investigate heat transfer in this activity to design and build a solar oven, then test its effectiveness using a temperature sensor. It blends the hands-on activity with digital graphing tools that allow kids to easily plot and share their data. Included in the package are illustrated procedures and extension activities. Note Requirements: This lesson requires a "VernierGo" temperature sensing device, available for ~ $40. This item is part of the Concord Consortium, a nonprofit research and development organization dedicated to transforming education through technology. The Consortium develops digital learning innovations for science, mathematics, and engineering.

Subject:
Applied Science
Engineering
Material Type:
Activity/Lab
Diagram/Illustration
Lecture Notes
Provider:
Concord Consortium
Provider Set:
Concord Consortium Collection
Author:
The Concord Consortium
Date Added:
04/02/2013
Conductivity
Unrestricted Use
CC BY
Rating
0.0 stars

Experiment with conductivity in metals, plastics and photoconductors. See why metals conduct and plastics don't, and why some materials conduct only when you shine a flashlight on them.

Subject:
Physical Science
Physics
Material Type:
Simulation
Provider:
University of Colorado Boulder
Provider Set:
PhET Interactive Simulations
Author:
Carl Wieman
Kathy Perkins
Sam McKagan
Sam Reid
Wendy Adams
Date Added:
07/01/2004
Conductivity of Water
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

It this exercise the students will discover that pure water does not conduct electricity and that dissolving different substances in water may or may not cause it to conduct electricity.

Subject:
Chemistry
Physical Science
Material Type:
Activity/Lab
Provider:
Science Education Resource Center (SERC) at Carleton College
Provider Set:
Pedagogy in Action
Author:
Art Trimble
Date Added:
08/10/2012
Conservation of Mass Gum Lab
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

Students develop and conduct an experiment using the law of conservation of mass to determine whether or not gum should be considered food. Students will compare the mass swallowed for sugar and sugar-free gum. This could be used to discuss solubility.

Subject:
Chemistry
Physical Science
Material Type:
Activity/Lab
Provider:
Science Education Resource Center (SERC) at Carleton College
Provider Set:
Pedagogy in Action
Author:
Nichol Reilly
Date Added:
08/10/2012
Conserving Waterlogged Wood
Unrestricted Use
CC BY
Rating
0.0 stars

This video resource is presented as a real-world application of chemistry in the field of conservation archaeology. Conservator, Francis Lukezic, walks through the conservation practices for waterlogged archaeological wood and explains the chemical and cellular processes at work. Use to support Maryland/NGSS for Grades 5, MS, and HS. For 5-PS1-1 and MS-PS1-1, have students watch or perform the paper clip demonstration and discuss how the hydrogen bonding of water allows this then is disrupted by the soap; have students develop diagrams explaining the phenomenon of surface tension on the molecular level. For HS-PS2-6, have students watch or perform the sponge demonstration and discuss how the molecular structure of the wood makes it vulnerable to becoming waterlogged then brainstorm materials that are more resilient to water and discuss the uses of the materials. For interdisciplinary connections to geography and history, have students research why Maryland archaeologists do or do not discover the materials brainstormed instead of wood. If you evaluate or use this resource, please respond to this short (4 question) survey bit.ly/3DhRumA

Subject:
Archaeology
Chemistry
Physical Science
Social Science
Material Type:
Activity/Lab
Case Study
Provider:
Jefferson Patterson Park and Museum
Author:
JPPM Admin
Date Added:
12/02/2021
Constructing a Model of ppbv of Surface Ozone
Read the Fine Print
Educational Use
Rating
0.0 stars

The purpose of this activity is to construct a model that will provide students with a visual representation of parts per billion. Students work in teams to construct cubes of different volumes and to compare them to get a feel for parts per million by volume and parts per billion by volume. The intended outcome is that students gain a feeling for the small quantities of gases, such as ozone, present in the Earth's atmosphere.

Subject:
Atmospheric Science
Physical Science
Material Type:
Activity/Lab
Interactive
Lesson Plan
Provider:
UCAR Staff
Provider Set:
GLOBE Teacher's Guide
Author:
The GLOBE Program, UCAR (University Corporation for Atmospheric Research)
Date Added:
08/01/2003
Consumer Testing and the Scientific Method
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

Using paper towels this activity introduces using the scientific method to set up and test and experiment.

Subject:
Chemistry
Physical Science
Material Type:
Activity/Lab
Provider:
Science Education Resource Center (SERC) at Carleton College
Provider Set:
Pedagogy in Action
Author:
Kathy Oellerich
Date Added:
08/10/2012
Contour Plates
Read the Fine Print
Rating
0.0 stars

In this activity, students construct three-dimensional models from terrain information provided by two-dimensional topographic maps. This will allow them to visualize how changes in elevation over a certain distance can be represented on a flat piece of paper that can be folded up and tucked away. Each group is responsible for constructing a model of Mount St. Helens 'before' and 'after', a depression, a stream, and a hill. Discussion questions related to the different representations are also included.

Subject:
Astronomy
Chemistry
Geoscience
Physical Geography
Physical Science
Physics
Space Science
Material Type:
Activity/Lab
Interactive
Provider:
UCAR Staff
Provider Set:
New York State Earth Science Instructional Collection
Author:
Drew Patrick
Date Added:
11/06/2014
Convective Cloud Systems
Read the Fine Print
Educational Use
Rating
0.0 stars

This video segment adapted from the Atmospheric Radiation Program explains the differences in the formation of tropical convective cloud systems over islands and over the ocean.

Subject:
Atmospheric Science
Physical Science
Material Type:
Activity/Lab
Diagram/Illustration
Provider:
PBS LearningMedia
Provider Set:
PBS Learning Media: Multimedia Resources for the Classroom and Professional Development
Author:
National Science Foundation
WGBH Educational Foundation
Date Added:
12/17/2005
Conversion Factors in Chemistry
Conditional Remix & Share Permitted
CC BY-SA
Rating
0.0 stars

This video sequence gives the basics of how to use conversion factors in chemistry.

Subject:
Chemistry
Material Type:
Module
Author:
Joshua Lang
Date Added:
06/07/2019
Cooking Cookies with Solar Power
Read the Fine Print
Educational Use
Rating
0.0 stars

In this video segment adapted from ZOOM, two solar cookers are tested against a control to see which can cook a "s'more" faster.

Subject:
Applied Science
Chemistry
Engineering
Physical Science
Physics
Technology
Material Type:
Activity/Lab
Provider:
PBS LearningMedia
Provider Set:
PBS Learning Media: Multimedia Resources for the Classroom and Professional Development
Author:
National Science Foundation
WGBH Educational Foundation
Date Added:
02/20/2004
Coral Kid
Read the Fine Print
Educational Use
Rating
0.0 stars

In this video segment, ZOOM guest Cassie takes us on a tour of the coral reef near her home in Key Largo, Florida, and points out some of its unique features.

Subject:
Oceanography
Physical Science
Material Type:
Activity/Lab
Diagram/Illustration
Provider:
PBS LearningMedia
Provider Set:
PBS Learning Media: Multimedia Resources for the Classroom and Professional Development
Author:
National Science Foundation
WGBH Educational Foundation
Date Added:
10/21/2005
Coral Reefs
Read the Fine Print
Rating
0.0 stars

In this video, Jonathan examines the biology of coral reefs and their importance to the marine ecosystem. Please see the accompanying lesson plan that discusses pH and ocean acidification for educational objectives, discussion points and classroom activities.

Subject:
Oceanography
Physical Science
Material Type:
Diagram/Illustration
Lesson Plan
Provider:
Jonathan Bird's Blue World
Provider Set:
Jonathan Bird's Blue World
Author:
Jonathan Bird Productions
Oceanic Research Group
Date Added:
03/01/2012