Updating search results...

Search Resources

4239 Results

View
Selected filters:
  • Engineering
A-MAZE-ING WOMEN OF STEM
Read the Fine Print
Educational Use
Rating
0.0 stars

Women at NASA are doing some A-MAZE-ING things! Challenge your puzzle skills and learn about women at NASA making a mark in science, technology, engineering and mathematics. Celebrate their accomplishments with these printable worksheets.

Subject:
Applied Science
Engineering
Physical Science
Material Type:
Activity/Lab
Provider:
NASA
Provider Set:
STEM Outreach
Author:
NASA
National Aeronautics and Space Administration
Date Added:
01/30/2023
AM I on the Radio?
Read the Fine Print
Educational Use
Rating
0.0 stars

Student groups create working radios by soldering circuit components supplied from AM radio kits. By carrying out this activity in conjunction with its associated lesson concerning circuits and how AM radios work, students are able to identify each circuit component they are soldering, as well as how their placement causes the radio to work. Besides reinforcing lesson concepts, students also learn how to solder, which is an activity that many engineers perform regularly giving students a chance to be able to engage in a real-life engineering activity.

Subject:
Applied Science
Career and Technical Education
Electronic Technology
Engineering
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Brandon Jones
Emily Spataro
Lara Oliver
Lisa Burton
Date Added:
09/18/2014
ANÁLISIS VECTORIAL
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

Esta lección introduce el estudiante al tema del Análisis Vectorial, como herramienta matemática para el cálculo de los campos electromagnéticos.

Subject:
Engineering
Material Type:
Student Guide
Author:
ARMANDO GALVEZ
Date Added:
07/26/2024
APSAR: Anonymous Position Based Security Aware Routing Protocol for MANETs
Only Sharing Permitted
CC BY-NC-ND
Rating
0.0 stars

In the last two decades, research in various aspects of mobile ad-hoc networks, MANETs, has been very active, motivated mainly by military, disaster relief and law enforcement scenarios. More recently, location information has become increasingly available; partially prompted by the emerging trend to incorporate location or position sensing into personal handheld devices. An evolutionary natural step is to adopt such position-based operation in MANETs. This results in what we call position-based MANETs. In such settings, devices are equipped with position-sensing capabilities and rely on position information in their operation. The main distinguishing feature of the envisaged position-based MANET environment is the communication paradigm based not on permanent or semi-permanent identities, addresses or pseudonyms, but on instantaneous node locations or positions. In some application settings, such as: military, law enforcement and search-and-rescue, node identities are not nearly as important as node positions. Such settings have certain characteristics in common. First, node position is very important: knowledge of the physical, as opposed to logical or relative topology, makes it possible to avoid wasteful communication and focus on nodes located within a specific area. Thus, the emphasis is not on the longterm node identity, but rather on current node position. Second, critical environments face security and privacy attacks. Security attacks aim to distribute false location and network ing control information, e.g., routing control messages, or impede the propagation of genuine information. The goal of privacy attacks is to track nodes as they move. Third, when the operating environment is hostile, as is the case in military and law enforcement settings, node identities must not be revealed. We use the term hostile to mean that communication is being monitored by adversarial entities that are not part of the MANET. The need to hide node identities becomes more pressing if we further assume that MANET nodes do not trust each other, due to a suspicious environment where nodes can be compromised. In such an environment, it is natural for node movements to be obscured, such that tracking a given node is impossible or, at least, very difficult. While we do not claim that such suspicious and hostile location-based MANET environments are commonplace, they do occur and require high security and privacy guarantees. While doing all these;there is a challenge for nodes to maintain anonymity protection from outside observers or malicious attackers. Full anonymity protection can be achieved only when ;sources,destinations and routes all are protected. In this work, to offer better anonymity protection, we propose an Anonymous Position-based Security Aware Routing Protocol (APSAR). Experimental results exhibit consistency with the theoretical analysis, and show that APSAR achieves better route anonymity protection compared to other anonymous routing protocols. Also, APSAR achieves comparable routing efficiency to the GPSR geographical routing protocol. The work in this thesis addresses a number of security and privacy issues arising in position-based MANETs. models. We address the problem of position based security aware routing in consideration with better anonymity protection .

Subject:
Engineering
Material Type:
Module
Author:
priyanka malgi
Sweta Parkhedkar
Date Added:
10/12/2017
APSC 100 Tiny House Project – Simple Book Publishing
Unrestricted Use
CC BY
Rating
0.0 stars

This book was created to support Project 677 in APSC 100 in the Faculty of Engineering at Queen’s University during the winter term of 2019, and is being updated and expanded to support Project 725 in Winter 2021. It provides a publicly visible collection of information that will help with this design project. Use of these resources elsewhere under the CC license is encouraged, but not supported. The contents of this book will grow and change over the term. Please fell free to add your comments or questions in any of the sections and I will try to address them.

The resources in this book are not comprehensive and are only intended to provide a starting point to explore design options. In particular, there will be many examples illustrated by single products that are not the only, or even the best solutions for a particular application. You will need to go well beyond the contents of this book to make your independent design decisions.

The models used for building heat transfer are very much simplified for an introduction to the ideas and should be used cautiously. Design of actual building systems should be undertaken in much greater detail. The target here is to use models that don’t require you to learn any new physics.

The secondary reason this book exists is to give me some practice using PressBooks to develop Open Educational Resources (OER). Some of the files that are linked from this book are on Google Drive, and some are on GitHub.

Word Count: 13755

(Note: This resource's metadata has been created automatically as part of a bulk import process by reformatting and/or combining the information that the author initially provided. As a result, there may be errors in formatting.)

Subject:
Applied Science
Career and Technical Education
Engineering
Material Type:
Activity/Lab
Textbook
Provider:
Rick Sellens
Author:
Rick Sellens
Date Added:
03/25/2019
Abdominal Cavity and Laparoscopic Surgery
Read the Fine Print
Educational Use
Rating
0.0 stars

For students interested in studying biomechanical engineering, especially in the field of surgery, this lesson serves as an anatomy and physiology primer of the abdominopelvic cavity. Students are introduced to the abdominopelvic cavity—a region of the body that is the focus of laparoscopic surgery—as well as the benefits and drawbacks of laparoscopic surgery. Understanding the abdominopelvic environment and laparoscopic surgery is critical for biomechanical engineers who design laparoscopic surgical tools.

Subject:
Anatomy/Physiology
Applied Science
Engineering
Life Science
Material Type:
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Benjamin S. Terry
Brandi N. Briggs
Denise W. Carlson
Stephanie Rivale
Date Added:
09/18/2014
Ablative Shield Egg Data Sheet
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

You will present students with a challenge: build a structure from different materials that will protect a model of the Ares launch vehicles (a raw egg) from the heat of a propane torch for as long as possible. Then they design, build, test, and revise their own thermal protection systems. They document their designs with sketches and written descriptions. As a culmination, students compile their results into a poster and present them to the class.

This activity explores the concepts of energy transfer with the following standards:
• Energy is a property of many substances and is associated with heat and light.
• Heat moves in predictable ways, flowing from warmer objects to cooler ones, until both reach the same temperature.

Subject:
Applied Science
Engineering
Physical Science
Material Type:
Activity/Lab
Date Added:
09/26/2018
Able Sports
Read the Fine Print
Educational Use
Rating
0.0 stars

This activity focuses on getting the students to think about disabilities and how they can make some aspects of life more difficult. The students are asked to pick a disability and design a new kind of sport for it.

Subject:
Applied Science
Engineering
Material Type:
Activity/Lab
Lesson Plan
Provider:
Worcester Polytechnic Institute
Author:
Bonniejean Boettcher
Date Added:
09/26/2008
About Accuracy and Approximation
Read the Fine Print
Educational Use
Rating
0.0 stars

Students learn about the concepts of accuracy and approximation as they pertain to robotics, gain insight into experimental accuracy, and learn how and when to estimate values that they measure. Students also explore sources of error stemming from the robot setup and rounding numbers.

Subject:
Applied Science
Engineering
Mathematics
Technology
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Ronald Poveda
Date Added:
09/18/2014
Above-Ground Storage Tank Design Project
Read the Fine Print
Educational Use
Rating
0.0 stars

At this point in the unit, students have learned about Pascal's law, Archimedes' principle, Bernoulli's principle, and why above-ground storage tanks are of major concern in the Houston Ship Channel and other coastal areas. In this culminating activity, student groups act as engineering design teams to derive equations to determine the stability of specific above-ground storage tank scenarios with given tank specifications and liquid contents. With their floatation analyses completed and the stability determined, students analyze the tank stability in specific storm conditions. Then, teams are challenged to come up with improved storage tank designs to make them less vulnerable to uplift, displacement and buckling in storm conditions. Teams present their analyses and design ideas in short class presentations.

Subject:
Applied Science
Engineering
Physical Science
Physics
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Emily Sappington
Mila Taylor
Date Added:
09/18/2014
Above-Ground Storage Tanks in the Houston Ship Channel
Read the Fine Print
Educational Use
Rating
0.0 stars

Students are provided with an introduction to above-ground storage tanks, specifically how and why they are used in the Houston Ship Channel. The introduction includes many photographic examples of petrochemical tank failures during major storms and describes the consequences in environmental pollution and costs to disrupted businesses and lives, as well as the lack of safety codes and provisions to better secure the tanks in coastal regions regularly visited by hurricanes. Students learn how the concepts of Archimedes' principle and Pascal's law act out in the form of the uplifting and buckling seen in the damaged and destroyed tanks, which sets the stage for the real-world engineering challenge presented in the associated activity to design new and/or improved storage tanks that can survive storm conditions.

Subject:
Applied Science
Architecture and Design
Engineering
Material Type:
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Emily Sappington
Mila Taylor
Date Added:
09/18/2014
Accelerometer: Centripetal Acceleration
Read the Fine Print
Educational Use
Rating
0.0 stars

Students work as physicists to understand centripetal acceleration concepts. They also learn about a good robot design and the accelerometer sensor. They also learn about the relationship between centripetal acceleration and centripetal force governed by the radius between the motor and accelerometer and the amount of mass at the end of the robot's arm. Students graph and analyze data collected from an accelerometer, and learn to design robots with proper weight distribution across the robot for their robotic arms. Upon using a data logging program, they view their own data collected during the activity. By activity end , students understand how a change in radius or mass can affect the data obtained from the accelerometer through the plots generated from the data logging program. More specifically, students learn about the accuracy and precision of the accelerometer measurements from numerous trials.

Subject:
Applied Science
Engineering
Physical Science
Physics
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Carlo Yuvienco
Jennifer S. Haghpanah
Date Added:
09/18/2014
Acid Attack
Read the Fine Print
Educational Use
Rating
0.0 stars

In this activity, students explore the effect of chemical erosion on statues and monuments. They use chalk to see what happens when limestone is placed in liquids with different pH values. They also learn several things that engineers are doing to reduce the effects of acid rain.

Subject:
Applied Science
Chemistry
Engineering
Physical Science
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Janet Yowell
Jessica Todd
Malinda Schaefer Zarske
Melissa Straten
Date Added:
10/14/2015
Acid Rain Effects
Read the Fine Print
Educational Use
Rating
0.0 stars

Students conduct a simple experiment to model and explore the harmful effects of acid rain (vinegar) on living (green leaf and eggshell) and non-living (paper clip) objects.

Subject:
Applied Science
Engineering
Environmental Science
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Amy Kolenbrander
Denise Carlson
Janet Yowell
Malinda Schaefer Zarske
Natalie Mach
Date Added:
10/14/2015
Acid (and Base) Rainbows
Read the Fine Print
Educational Use
Rating
0.0 stars

Students are introduced to the differences between acids and bases and how to use indicators, such as pH paper and red cabbage juice, to distinguish between them.

Subject:
Applied Science
Engineering
Material Type:
Activity/Lab
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Amy Kolenbrander
Denise Carlson
Gwendolyn Frank
Janet Yowell
Malinda Schaefer Zarske
Natalie Mach
Sharon Perez
Date Added:
09/26/2008
Acoustic Remote Sensing and Sea Floor Mapping
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

The course treats the following topics: - Relevant physical oceanography - Elements of marine geology (seafloor topography, acoustical properties of sediments and rocks) - Underwater sound propagation (ray acoustics, ocean noise) - Interaction of sound with the seafloor (reflection, scattering) - Principles of sonar (beamforming) - Underwater acoustic mapping systems (single beam echo sounding, multi-beam echo sounding, sidescan sonar) - Data analysis (refraction corrections, digital terrain modelling) - Applications (hydrographic survey planning and navigation, coastal engineering) - Current and future developments.

Subject:
Applied Science
Engineering
Oceanography
Physical Science
Material Type:
Homework/Assignment
Lecture Notes
Reading
Provider:
Delft University of Technology
Provider Set:
TU Delft OpenCourseWare
Author:
dr.ir. M. Snellen
Date Added:
02/09/2016
Acoustical Oceanography
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This course will begin with brief overview of what important current research topics are in oceanography (physical, geological, and biological) and how acoustics can be used as a tool to address them. Three typical examples are climate, bottom geology, and marine mammal behavior. Will then address the acoustic inverse problem, reviewing inverse methods (linear and nonlinear) and the combination of acoustical methods with other measurements as an integrated system. Last part of course will concentrate on specific case studies, taken from current research journals. This course is taught on campus at MIT and with simultaneous video at Woods Hole Oceanographic Institution.

Subject:
Applied Science
Atmospheric Science
Engineering
Oceanography
Physical Science
Physics
Material Type:
Full Course
Provider Set:
MIT OpenCourseWare
Author:
Lynch, James
Date Added:
02/01/2012
Acoustics of Speech and Hearing
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

The Acoustics of Speech and Hearing is an H-Level graduate course that reviews the physical processes involved in the production, propagation and reception of human speech. Particular attention is paid to how the acoustics and mechanics of the speech and auditory system define what sounds we are capable of producing and what sounds we can sense. Areas of discussion include:

the acoustic cues used in determining the direction of a sound source,

the acoustic and mechanical mechanisms involved in speech production and

the acoustic and mechanical mechanism used to transduce and analyze sounds in the ear.

Subject:
Applied Science
Biology
Career and Technical Education
Electronic Technology
Engineering
Health, Medicine and Nursing
Life Science
Material Type:
Full Course
Provider Set:
MIT OpenCourseWare
Author:
Braida, Louis
Rosowski, John
Shera, Christopher
Stevens, Kenneth
Date Added:
09/01/2004
Action-Reaction! Rocket
Read the Fine Print
Educational Use
Rating
0.0 stars

Students construct rockets from balloons propelled along a guide string. They use this model to learn about Newton's three laws of motion, examining the effect of different forces on the motion of the rocket.

Subject:
Applied Science
Engineering
Physical Science
Physics
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Ben Heavner
Denise W. Carlson
Malinda Schaefer Zarske
Sabre Duren
Date Added:
10/14/2015