Updating search results...

Search Resources

10000 Results

View
Selected filters:
  • Physical Science
Bohr model energy levels
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

Calculating electron energy for levels n=1 to 3. Drawing a shell model diagram and an energy diagram for hydrogen, and then using the diagrams to calculate the energy required to excite an electron between different energy levels. Created by Jay.

Subject:
Physical Science
Physics
Material Type:
Lesson
Provider:
Khan Academy
Provider Set:
Association of American Medical Colleges
Author:
James Luer
Date Added:
06/17/2014
Bohr model energy levels (derivation using physics)
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

Using classical physics to calculate the energy of electrons in Bohr model. Solving for energy of ground state and more generally for level n. Created by Jay

Subject:
Physical Science
Physics
Material Type:
Lesson
Provider:
Khan Academy
Provider Set:
Association of American Medical Colleges
Author:
James Luer
Date Added:
06/17/2014
Bohr model radii (derivation using physics)
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

Using classical physics and vectors, plus assumption that angular momentum of electron is quantized, to derive the equation for Bohr model radii. Created by Jay.

Subject:
Physical Science
Physics
Material Type:
Lesson
Provider:
Khan Academy
Provider Set:
Association of American Medical Colleges
Author:
James Luer
Date Added:
06/17/2014
Boiling Point
Unrestricted Use
CC BY
Rating
0.0 stars

This model allows you to explore why polar and non-polar substances have very different boiling points. While all molecules are attracted to each other, some attractions are stronger than others. Non-polar molecules are attracted through a London dispersion attraction; polar molecules are attracted through both the London dispersion force and the stronger dipole-dipole attraction. The force of attractions between molecules has consequences for their interactions in physical, chemical and biological applications.

Subject:
Life Science
Physical Science
Material Type:
Simulation
Provider:
Concord Consortium
Provider Set:
Concord Consortium
Author:
Concord Consortium
Date Added:
05/14/2021
Boiling Water With Ice: Effect of Pressure on the Boiling Point of Water
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This guided inquiry activity, in which ice is used to boil water in a Florence flask, works well in the introductory class to a chemistry or physical science course. The students will learn the difference between observation and inference and apply this understanding to various other situations in which observations and inferences must be made. The students will also use outside sources to try to explain why the activity worked.

Subject:
Chemistry
Physical Science
Material Type:
Activity/Lab
Assessment
Lesson Plan
Provider:
Science Education Resource Center (SERC) at Carleton College
Provider Set:
Pedagogy in Action
Date Added:
12/09/2011
Bomb Cyclones - They're Explosive!
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

Storms can have devastating impacts on coastal communities. Typically, tropical storms like hurricanes get the most attention, but there are other types of storms that occur at more northern latitudes that can be just as destructive. For example, in January of 2018, Winter Storm Grayson caused more than 300,000 power outages and $1.1 billion in damage, and resulted in 22 confirmed casualties along the eastern seaboard. In this module, students will learn how barometric pressure changes during a storm, analyze the effect of storms on oceanographic variables, classify a storm as a bomb cyclone, and compare a bomb cyclone to a hurricane. Ultimately students will use their quantitative reasoning skills to manipulate and visualize data during storms in the northeastern United States.

(Note: this resource was added to OER Commons as part of a batch upload of over 2,200 records. If you notice an issue with the quality of the metadata, please let us know by using the 'report' button and we will flag it for consideration.)

Subject:
Biology
Career and Technical Education
Environmental Studies
Geology
Life Science
Mathematics
Measurement and Data
Oceanography
Physical Science
Statistics and Probability
Material Type:
Activity/Lab
Provider:
Science Education Resource Center (SERC) at Carleton College
Provider Set:
Teach the Earth
Author:
Jacqui Jenkins-Degan, Marine Technology Program, Cape Fear Community College
Date Added:
09/19/2022
Bond Polarity and Determining Molecular Geometry
Read the Fine Print
Educational Use
Rating
0.0 stars

In this lesson, students will examine electronegativities of atoms relative to one another to determine if a covalent bond will be classified as polar or nonpolar. Students will use an online simulation to help them understand the importance of lone pairs of electrons as well as bonding pairs of electrons. Students will use ball-and-stick models to examine and identify the shapes of various molecules. This lesson results from a collaboration between the Alabama State Department of Education and ASTA.

Subject:
Chemistry
Physical Science
Material Type:
Lesson Plan
Provider:
Alabama Learning Exchange (ALEX)
Date Added:
04/29/2019
Bone Mineral Density Math and Beer's Law
Read the Fine Print
Educational Use
Rating
0.0 stars

Students revisit the mathematics required to find bone mineral density, to which they were introduced in lesson 2 of this unit. They learn the equation to find intensity, Beer's law, and how to use it. Then they complete a sheet of practice problems that use the equation.

Subject:
Applied Science
Engineering
Physical Science
Physics
Material Type:
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Kristyn Shaffer
Date Added:
09/18/2014
Bone Mineral Density and Logarithms
Read the Fine Print
Educational Use
Rating
0.0 stars

Students examine an image produced by a cabinet x-ray system to determine if it is a quality bone mineral density image. They write in their journals about what they need to know to be able to make this judgment. Students learn about what bone mineral density is, how a BMD image can be obtained, and how it is related to the x-ray field. Students examine the process used to obtain a BMD image and how this process is related to mathematics, primarily through logarithmic functions. They study the relationship between logarithms and exponents, the properties of logarithms, common and natural logarithms, solving exponential equations and Beer's law.

Subject:
Applied Science
Engineering
Life Science
Physical Science
Physics
Material Type:
Unit of Study
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Kristyn Shaffer
Date Added:
09/18/2014
Bone Stress
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

In this optics activity, learners examine how polarized light can reveal stress patterns in clear plastic. Learners place a fork between two pieces of polarizing material and induce stress by squeezing the tines together. Learners will observe the colored stress pattern in the image of the plastic that is projected onto a screen using an overhead projector. Learners rotate one of the polarizing filters to explore which orientations give the most dramatic color effects. This activity can be related to bones, as bones develop stress patterns from the loads imposed upon them every day.

Subject:
Physical Science
Physics
Material Type:
Activity/Lab
Provider:
Exploratorium
Provider Set:
Science Snacks
Date Added:
12/01/2012
Booming Sands
Read the Fine Print
Educational Use
Rating
0.0 stars

This video segment, adapted from NOVA scienceNOW, presents basic concepts of physics behind booming sand dunes. See how surface tension affects potential and kinetic energy and how it all works together to create sound.

Subject:
Chemistry
Physical Science
Physics
Material Type:
Lecture
Provider:
PBS LearningMedia
Provider Set:
PBS Learning Media: Multimedia Resources for the Classroom and Professional Development
Author:
The William and Flora Hewlett Foundation
WGBH Educational Foundation
Date Added:
04/19/2007
Boosting Ecosystem Resilience in the Southwest's Sky Islands
Read the Fine Print
Rating
0.0 stars

Conservation organizations teamed up to document the climate vulnerability of mountain springs that support unique ecosystems. Now, the Alliance they formed facilitates restoration work to enhance habitats and improve resiliency.

Subject:
Atmospheric Science
Physical Science
Material Type:
Case Study
Provider:
National Oceanic and Atmospheric Administration
Provider Set:
U.S. Climate Resilience Toolkit
Date Added:
08/09/2016
Borehole Logging from Sample Collection to Borehole Geophysics
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

In January of 2003, CSUF drilled and completed a deep multiport-monitoring well on the north side of campus. This was done in order to gain a better understanding of the local subsurface geology and groundwater conditions in and around CSUF. Samples were collected from the drill hole (boring) every 5-feet. The total depth of the well is 870 feet below ground surface (grade). Borehole geophysical data (E-log) information was collected from the boring prior to the installation of the well pipe. As you describe the soil samples, compare and contrast your findings to those of the geophysical signature (gamma-ray log) found in the accompanying "E-log" for the boring.

(Note: this resource was added to OER Commons as part of a batch upload of over 2,200 records. If you notice an issue with the quality of the metadata, please let us know by using the 'report' button and we will flag it for consideration.)

Subject:
Biology
Hydrology
Life Science
Physical Science
Material Type:
Activity/Lab
Provider:
Science Education Resource Center (SERC) at Carleton College
Provider Set:
Teach the Earth
Author:
Richard Laton
Date Added:
08/27/2019
BotEC: Depth of Buried Metamorphic Rock
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

Question In many high-grade metamorphic belts around the world, rocks were buried 20-30 km beneath the surface during deformation and metamorphism. How deep is that relative to the cruising altitude of a typical commercial airplane flying across the country?

(Note: this resource was added to OER Commons as part of a batch upload of over 2,200 records. If you notice an issue with the quality of the metadata, please let us know by using the 'report' button and we will flag it for consideration.)

Subject:
Biology
Geoscience
Life Science
Mathematics
Measurement and Data
Physical Science
Statistics and Probability
Material Type:
Activity/Lab
Provider:
Science Education Resource Center (SERC) at Carleton College
Provider Set:
Teach the Earth
Author:
Barb Tewksbury
Date Added:
09/22/2022
BotEC: Eruption Rates
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

Question
Over the last 70 million years or so, the Hawaiian Hot Spot has been pumping out lava, a total of about 775,000 km3 worth. As the Pacific Plate has moved over the hot spot, the volcanic peaks and plateaus of the Hawaiian-Emperor seamount chain have formed. If all of that lava had erupted in California, how deeply would California be buried in lava?

(Note: this resource was added to OER Commons as part of a batch upload of over 2,200 records. If you notice an issue with the quality of the metadata, please let us know by using the 'report' button and we will flag it for consideration.)

Subject:
Biology
Geoscience
Life Science
Mathematics
Measurement and Data
Physical Science
Statistics and Probability
Material Type:
Activity/Lab
Provider:
Science Education Resource Center (SERC) at Carleton College
Provider Set:
Teach the Earth
Author:
Barb Tewksbury
Date Added:
11/15/2019