Library Carpentry lesson to learn how to use the Shell. This Library …
Library Carpentry lesson to learn how to use the Shell. This Library Carpentry lesson introduces librarians to the Unix Shell. At the conclusion of the lesson you will: understand the basics of the Unix shell; understand why and how to use the command line; use shell commands to work with directories and files; use shell commands to find and manipulate data.
Preregistration is the process of specifying project details, such as hypotheses, data …
Preregistration is the process of specifying project details, such as hypotheses, data collection procedures, and analytical decisions, prior to conducting a study. It is designed to make a clearer distinction between data-driven, exploratory work and a-priori, confirmatory work. Both modes of research are valuable, but are easy to unintentionally conflate. See the Preregistration Revolution for more background and recommendations.
For research that uses existing datasets, there is an increased risk of analysts being biased by preliminary trends in the dataset. However, that risk can be balanced by proper blinding to any summary statistics in the dataset and the use of hold out datasets (where the "training" and "validation" datasets are kept separate from each other). See this page for specific recommendations about "split samples" or "hold out" datasets. Finally, if those procedures are not followed, disclosure of possible biases can inform the researcher and her audience about the proper role any results should have (i.e. the results should be deemed mostly exploratory and ideal for additional confirmation).
This project contains a template for creating your preregistration, designed specifically for research using existing data. In the future, this template will be integrated into the OSF.
Preregistration is the process of specifying project details, such as hypotheses, data …
Preregistration is the process of specifying project details, such as hypotheses, data collection procedures, and analytical decisions, prior to conducting a study. It is designed to make a clearer distinction between data-driven, exploratory work and a-priori, confirmatory work. Both modes of research are valuable, but are easy to unintentionally conflate. See the Preregistration Revolution for more background and recommendations.
For research that uses existing datasets, there is an increased risk of analysts being biased by preliminary trends in the dataset. However, that risk can be balanced by proper blinding to any summary statistics in the dataset and the use of hold out datasets (where the "training" and "validation" datasets are kept separate from each other). See this page for specific recommendations about "split samples" or "hold out" datasets. Finally, if those procedures are not followed, disclosure of possible biases can inform the researcher and her audience about the proper role any results should have (i.e. the results should be deemed mostly exploratory and ideal for additional confirmation).
This project contains a template for creating your preregistration, designed specifically for research using existing data. In the future, this template will be integrated into the OSF.
Software Carpentry lesson on how to use the shell to navigate the …
Software Carpentry lesson on how to use the shell to navigate the filesystem and write simple loops and scripts. The Unix shell has been around longer than most of its users have been alive. It has survived so long because it’s a power tool that allows people to do complex things with just a few keystrokes. More importantly, it helps them combine existing programs in new ways and automate repetitive tasks so they aren’t typing the same things over and over again. Use of the shell is fundamental to using a wide range of other powerful tools and computing resources (including “high-performance computing†supercomputers). These lessons will start you on a path towards using these resources effectively.
No restrictions on your remixing, redistributing, or making derivative works. Give credit to the author, as required.
Your remixing, redistributing, or making derivatives works comes with some restrictions, including how it is shared.
Your redistributing comes with some restrictions. Do not remix or make derivative works.
Most restrictive license type. Prohibits most uses, sharing, and any changes.
Copyrighted materials, available under Fair Use and the TEACH Act for US-based educators, or other custom arrangements. Go to the resource provider to see their individual restrictions.