The field of infancy research faces a difficult challenge: some questions require …
The field of infancy research faces a difficult challenge: some questions require samples that are simply too large for any one lab to recruit and test. ManyBabies aims to address this problem by forming large-scale collaborations on key theoretical questions in developmental science, while promoting the uptake of Open Science practices. Here, we look back on the first project completed under the ManyBabies umbrella – ManyBabies 1 – which tested the development of infant-directed speech preference. Our goal is to share the lessons learned over the course of the project and to articulate our vision for the role of large-scale collaborations in the field. First, we consider the decisions made in scaling up experimental research for a collaboration involving 100+ researchers and 70+ labs. Next, we discuss successes and challenges over the course of the project, including: protocol design and implementation, data analysis, organizational structures and collaborative workflows, securing funding, and encouraging broad participation in the project. Finally, we discuss the benefits we see both in ongoing ManyBabies projects and in future large-scale collaborations in general, with a particular eye towards developing best practices and increasing growth and diversity in infancy research and psychological science in general. Throughout the paper, we include first-hand narrative experiences, in order to illustrate the perspectives of researchers playing different roles within the project. While this project focused on the unique challenges of infant research, many of the insights we gained can be applied to large-scale collaborations across the broader field of psychology.
Access to data is a critical feature of an efficient, progressive and …
Access to data is a critical feature of an efficient, progressive and ultimately self-correcting scientific ecosystem. But the extent to which in-principle benefits of data sharing are realized in practice is unclear. Crucially, it is largely unknown whether published findings can be reproduced by repeating reported analyses upon shared data (‘analytic reproducibility’). To investigate this, we conducted an observational evaluation of a mandatory open data policy introduced at the journal Cognition. Interrupted time-series analyses indicated a substantial post-policy increase in data available statements (104/417, 25% pre-policy to 136/174, 78% post-policy), although not all data appeared reusable (23/104, 22% pre-policy to 85/136, 62%, post-policy). For 35 of the articles determined to have reusable data, we attempted to reproduce 1324 target values. Ultimately, 64 values could not be reproduced within a 10% margin of error. For 22 articles all target values were reproduced, but 11 of these required author assistance. For 13 articles at least one value could not be reproduced despite author assistance. Importantly, there were no clear indications that original conclusions were seriously impacted. Mandatory open data policies can increase the frequency and quality of data sharing. However, suboptimal data curation, unclear analysis specification and reporting errors can impede analytic reproducibility, undermining the utility of data sharing and the credibility of scientific findings.
No restrictions on your remixing, redistributing, or making derivative works. Give credit to the author, as required.
Your remixing, redistributing, or making derivatives works comes with some restrictions, including how it is shared.
Your redistributing comes with some restrictions. Do not remix or make derivative works.
Most restrictive license type. Prohibits most uses, sharing, and any changes.
Copyrighted materials, available under Fair Use and the TEACH Act for US-based educators, or other custom arrangements. Go to the resource provider to see their individual restrictions.