Updating search results...

Search Resources

33 Results

View
Selected filters:
  • entropy
Biology
Unrestricted Use
CC BY
Rating
0.0 stars

Biology is designed for multi-semester biology courses for science majors. It is grounded on an evolutionary basis and includes exciting features that highlight careers in the biological sciences and everyday applications of the concepts at hand. To meet the needs of today’s instructors and students, some content has been strategically condensed while maintaining the overall scope and coverage of traditional texts for this course. Instructors can customize the book, adapting it to the approach that works best in their classroom. Biology also includes an innovative art program that incorporates critical thinking and clicker questions to help students understand—and apply—key concepts.

Subject:
Biology
Life Science
Material Type:
Full Course
Provider:
Rice University
Provider Set:
OpenStax College
Date Added:
08/22/2012
Bridging to Polymers: Thermoset Lab
Read the Fine Print
Educational Use
Rating
0.0 stars

Students act as engineers to learn about the strengths of various epoxy-amine mixtures and observe the unique characteristics of different mixtures of epoxies and hardeners. Student groups make and optimize thermosets by combining two chemicals in exacting ratios to fabricate the strongest and/or most flexible thermoset possible.

Subject:
Applied Science
Chemistry
Engineering
Physical Science
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Brian Rohde
Don McGowan
Date Added:
09/18/2014
Chemical Engineering Thermodynamics
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This course aims to connect the principles, concepts, and laws/postulates of classical and statistical thermodynamics to applications that require quantitative knowledge of thermodynamic properties from a macroscopic to a molecular level. It covers their basic postulates of classical thermodynamics and their application to transient open and closed systems, criteria of stability and equilibria, as well as constitutive property models of pure materials and mixtures emphasizing molecular-level effects using the formalism of statistical mechanics. Phase and chemical equilibria of multicomponent systems are covered. Applications are emphasized through extensive problem work relating to practical cases.

Subject:
Applied Science
Chemistry
Engineering
Physical Science
Physics
Material Type:
Full Course
Provider:
MIT
Provider Set:
MIT OpenCourseWare
Author:
Tester, Jefferson
Trout, Bernhardt
Date Added:
09/01/2003
Close Encounters of the Polymer Kind
Read the Fine Print
Educational Use
Rating
0.0 stars

Polymers are a vital part of our everyday lives and nearly all consumer products have a plastic component of some variation. Students explore the basic characteristics of polymers through the introduction of two polymer categories: thermoplastics and thermosets. During teacher demos, students observe the unique behaviors of thermoplastics. The fundamentals of thermoset polymers are discussed, preparing them to conduct the associated activity in which they create their own thermoset materials and mechanically test them. At the conclusion of this lesson-activity pair, students understand the basics of thermoplastics and thermosets, which may entice their interest in polymer engineering.

Subject:
Applied Science
Chemistry
Engineering
Physical Science
Material Type:
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Brian Rohde
Don McGowan
Date Added:
09/18/2014
Communication Systems Engineering
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This course will cover fundamentals of digital communications and networking. We will study the basics of information theory, sampling and quantization, coding, modulation, signal detection and system performance in the presence of noise. The study of data networking will include multiple access, reliable packet transmission, routing and protocols of the internet. The concepts taught in class will be discussed in the context of aerospace communication systems: aircraft communications, satellite communications, and deep space communications.

Subject:
Applied Science
Career and Technical Education
Computer Science
Electronic Technology
Engineering
Material Type:
Full Course
Provider:
MIT
Provider Set:
MIT OpenCourseWare
Author:
Modiano, Eytan
Date Added:
02/01/2009
A Comprehensive Approach To Engineering Thermodynamics.
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

Engineering thermodynamics is a branch of science that deals with the study of energy conversion and its relationship with heat and work. It's a fundamental discipline in engineering, providing the principles necessary for the analysis and design of various energy systems and processes. In this article, topics such as the systems, state, process, properties of pure substances, heat and work, and thermal equilibrium are meticulously explained to enable easy comprehension. This study guide would enable students to use thermodynamics to optimize the performance and efficiency of engines, power plants, refrigeration systems, and other devices that involve energy transfer. Additionally, understanding this concept of engineering thermodynamics would equip students with the initiative to design a sustainable system that helps mitigate greenhouse gases from fossil fuels.

Subject:
Engineering
Material Type:
Unit of Study
Author:
Victor Emeziem
Date Added:
05/15/2024
Computational Biology
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This course covers the algorithmic and machine learning foundations of computational biology combining theory with practice. We cover both foundational topics in computational biology, and current research frontiers. We study fundamental techniques, recent advances in the field, and work directly with current large-scale biological datasets.

Subject:
Applied Science
Biology
Engineering
Life Science
Material Type:
Full Course
Provider:
MIT
Provider Set:
MIT OpenCourseWare
Author:
Kellis, Manolis
Date Added:
09/01/2015
Computational Personal Genomics: Making Sense of Complete Genomes
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

With the growing availability and lowering costs of genotyping and personal genome sequencing, the focus has shifted from the ability to obtain the sequence to the ability to make sense of the resulting information. This course is aimed at exploring the computational challenges associated with interpreting how sequence differences between individuals lead to phenotypic differences in gene expression, disease predisposition, or response to treatment.

Subject:
Biology
Genetics
Life Science
Physical Science
Material Type:
Full Course
Provider:
MIT
Provider Set:
MIT OpenCourseWare
Author:
Kellis, Manolis
Date Added:
02/01/2016
Cortical information integration and connectivity  during propofol anesthesia
Unrestricted Use
CC BY
Rating
0.0 stars

This resource is a video abstract of a research paper created by Research Square on behalf of its authors. It provides a synopsis that's easy to understand, and can be used to introduce the topics it covers to students, researchers, and the general public. The video's transcript is also provided in full, with a portion provided below for preview:

"How does a person experiencing anesthesia lose consciousness? Despite billions of surgeries, scientists still don’t fully understand what happens in the brain when a patient goes under. New research in the journal Anesthesiology, however, provides a few more clues. Working in a group of patients with epilepsy, scientists used a new information measure to evaluate electrocorticography data -- and found that with anesthesia, there is a reduction in information integration and network connectivity. The team recorded electrocorticograms, or intracranial E-E-Gs, from nine patients who were anesthetized predominantly with propofol and underwent surgical treatment for epilepsy in China. To assess information integration, the team used a measure called [genuine permutation cross mutual information], or G-P-C-M-I. In an earlier study, they found the measure performed better than others using scalp EEG recordings..."

The rest of the transcript, along with a link to the research itself, is available on the resource itself.

Subject:
Applied Science
Health, Medicine and Nursing
Material Type:
Diagram/Illustration
Reading
Provider:
Research Square
Provider Set:
Video Bytes
Date Added:
10/23/2020
Efficiency of a Water Heating System
Read the Fine Print
Educational Use
Rating
0.0 stars

Students use a watt meter to measure energy input into a hot plate or hot pot used to heat water. The theoretical amount of energy required to raise the water by the measure temperature change is calculated and compared to the electrical energy input to calculate efficiency.

Subject:
Applied Science
Engineering
Physical Science
Physics
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Jan DeWaters
Susan Powers
Date Added:
09/18/2014
Energy Efficiency
Read the Fine Print
Educational Use
Rating
0.0 stars

This Lesson provides two different activities that require students to measure energy outputs and inputs to determine the efficiency of conversions and simple systems. One of the activities includes Lego motors and accomplishing work. The other investigates energy for heating water. They learn about by products of energy conversions and how to improve upon efficiency. The teacher can choose to use either of these or both of these. The calculations in the water heating experiment are more complicated than in the Lego motor activity. Thus, the heating activity is suitable for older students, only the Lego motor activity suitable for younger students.

Subject:
Applied Science
Engineering
Material Type:
Activity/Lab
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Jan DeWaters
Nate Barlow
Susan Powers
Date Added:
09/18/2014
Energy Forms and Changes
Unrestricted Use
CC BY
Rating
0.0 stars

This simulation lets learners explore how heating and cooling adds or removes energy. Use a slider to heat blocks of iron or brick to see the energy flow. Next, build your own system to convert mechanical, light, or chemical energy into electrical or thermal energy. (Learners can choose sunlight, steam, flowing water, or mechanical energy to power their systems.) The simulation allows students to visualize energy transformation and describe how energy flows in various systems. Through examples from everyday life, it also bolsters understanding of conservation of energy. This item is part of a larger collection of simulations developed by the Physics Education Technology project (PhET).

Subject:
Physical Science
Physics
Material Type:
Simulation
Provider:
University of Colorado Boulder
Provider Set:
PhET Interactive Simulations
Author:
Ariel Paul
Emily Moore
John Blanco
Kathy Perkins
Noah Podolefsky
Trish Loeblein
Date Added:
04/25/2013
Fundamentals of Physics, I
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This course provides a thorough introduction to the principles and methods of physics for students who have good preparation in physics and mathematics. Emphasis is placed on problem solving and quantitative reasoning. This course covers Newtonian mechanics, special relativity, gravitation, thermodynamics, and waves.

Subject:
Physical Science
Physics
Material Type:
Full Course
Provider:
Yale University
Provider Set:
Open Yale Courses
Author:
Ramamurti Shankar
Date Added:
02/16/2011
General Chemistry I
Unrestricted Use
CC BY
Rating
0.0 stars

This survey chemistry course is designed to introduce students to the world of chemistry. In this course, we will study chemistry from the ground up, learning the basics of the atom and its behavior. We will apply this knowledge to understand the chemical properties of matter and the changes and reactions that take place in all types of matter. Upon successful completion of this course, students will be able to: Define the general term 'chemistry.' Distinguish between the physical and chemical properties of matter. Distinguish between mixtures and pure substances. Describe the arrangement of the periodic table. Perform mathematical operations involving significant figures. Convert measurements into scientific notation. Explain the law of conservation of mass, the law of definite composition, and the law of multiple proportions. Summarize the essential points of Dalton's atomic theory. Define the term 'atom.' Describe electron configurations. Draw Lewis structures for molecules. Name ionic and covalent compounds using the rules for nomenclature of inorganic compounds. Explain the relationship between enthalpy change and a reaction's tendency to occur. (Chemistry 101; See also: Biology 105. Mechanical Engineering 004)

Subject:
Chemistry
Physical Science
Material Type:
Assessment
Full Course
Homework/Assignment
Lecture
Lecture Notes
Reading
Syllabus
Textbook
Provider:
The Saylor Foundation
Date Added:
11/16/2011
Information Theory
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This is a graduate-level introduction to mathematics of information theory. We will cover both classical and modern topics, including information entropy, lossless data compression, binary hypothesis testing, channel coding, and lossy data compression.

Subject:
Applied Science
Computer Science
Engineering
Mathematics
Statistics and Probability
Material Type:
Full Course
Provider:
MIT
Provider Set:
MIT OpenCourseWare
Author:
Polyanskiy, Yury
Date Added:
02/01/2016
Introduction to Computational Thinking and Data Science
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

6.0002 is the continuation of 6.0001 Introduction to Computer Science and Programming in Python and is intended for students with little or no programming experience. It aims to provide students with an understanding of the role computation can play in solving problems and to help students, regardless of their major, feel justifiably confident of their ability to write small programs that allow them to accomplish useful goals. The class uses the Python 3.5 programming language.

Subject:
Applied Science
Computer Science
Engineering
Mathematics
Statistics and Probability
Material Type:
Full Course
Provider:
MIT
Provider Set:
MIT OpenCourseWare
Author:
Bell, Ana
Grimson, Eric
Guttag, John
Date Added:
09/01/2016