You probably have a general understanding of how your body works. But …
You probably have a general understanding of how your body works. But do you fully comprehend how all of the intricate functions and systems of the human body work together to keep you healthy? This course will provide that insight. By approaching the study of the body in an organized way, you will be able to connect what you learn about anatomy and physiology to what you already know about your own body.
By taking this course, you will begin to think and speak in the language of the domain while integrating the knowledge you gain about anatomy to support explanations of physiological phenomenon. The course focuses on a few themes that, when taken together, provide a full view of what the human body is capable of and of the exciting processes going on inside of it.
To access this course, click "Enter Open & Free Course," then "Enter course" under "Enter without an account."
These course modules are meant to accompany the OpenStax Anatomy & Physiology …
These course modules are meant to accompany the OpenStax Anatomy & Physiology textbook. Included within each subunit are both Articulate Rise 360 exported raw Web and SCORM 1.2 ZIP files. These files are to be Imported into a Learning Management System. Each module contains text and images from the OpenStax book, original text, openly licensed images from various sources, formative activities, and links to videos on public websites. The modules are free to use as needed. If modification is desired, please contact the author, and I will send you the Rise 360 source file.
Anatomy and Physiology is a dynamic textbook for the two-semester human anatomy and …
Anatomy and Physiology is a dynamic textbook for the two-semester human anatomy and physiology course for life science and allied health majors. The book is organized by body system and covers standard scope and sequence requirements. Its lucid text, strategically constructed art, career features, and links to external learning tools address the critical teaching and learning challenges in the course. The web-based version of Anatomy and Physiology also features links to surgical videos, histology, and interactive diagrams.
Students learn more about how muscles work and how biomedical engineers can …
Students learn more about how muscles work and how biomedical engineers can help keep the muscular system healthy. Following the engineering design process, they create their own biomedical device to aid in the recovery of a strained bicep. They discover the importance of rest to muscle recovery and that muscles (just like engineers!) work together to achieve a common goal.
Biology is designed for multi-semester biology courses for science majors. It is …
Biology is designed for multi-semester biology courses for science majors. It is grounded on an evolutionary basis and includes exciting features that highlight careers in the biological sciences and everyday applications of the concepts at hand. To meet the needs of today’s instructors and students, some content has been strategically condensed while maintaining the overall scope and coverage of traditional texts for this course. Instructors can customize the book, adapting it to the approach that works best in their classroom. Biology also includes an innovative art program that incorporates critical thinking and clicker questions to help students understand—and apply—key concepts.
In the Body System Amusement Parks project, students team up to create …
In the Body System Amusement Parks project, students team up to create amusement parks based on the various systems and organs within the human body. With the power of abstraction, each attraction represents the cardiovascular system, the muscular system, the digestive system, etc. Teams create both 3D scale models and presentations to an unnamed wealthy investment firm looking to build a new park in the students’ very own town. This activity was heavily inspired by a post from Danielle Dace.
In the Body System Amusement Parks project, students team up to create …
In the Body System Amusement Parks project, students team up to create amusement parks based on the various systems and organs within the human body. With the power of abstraction, each attraction represents the cardiovascular system, the muscular system, the digestive system, etc. Teams create both 3D scale models and presentations to an unnamed wealthy investment firm looking to build a new park in the students’ very own town. This activity was heavily inspired by a post from Danielle Dace.
In the Body System Amusement Parks project, students team up to create …
In the Body System Amusement Parks project, students team up to create amusement parks based on the various systems and organs within the human body. With the power of abstraction, each attraction represents the cardiovascular system, the muscular system, the digestive system, etc. Teams create both 3D scale models and presentations to an unnamed wealthy investment firm looking to build a new park in the students’ very own town. This activity was heavily inspired by a post from Danielle Dace.
In the Body System Amusement Parks project, students team up to create …
In the Body System Amusement Parks project, students team up to create amusement parks based on the various systems and organs within the human body. With the power of abstraction, each attraction represents the cardiovascular system, the muscular system, the digestive system, etc. Teams create both 3D scale models and presentations to an unnamed wealthy investment firm looking to build a new park in the students’ very own town. This activity was heavily inspired by a post from Danielle Dace.
The students will investigate the muscular system by observing and comparing slides …
The students will investigate the muscular system by observing and comparing slides of muscles, by observing changes in their arm muscles and by observing their respiration and pulse rate during sitting, walking and running.
Student teams build model hand dynamometers used to measure grip strengths of …
Student teams build model hand dynamometers used to measure grip strengths of people recovering from sports injuries. They use their models to measure how much force their classmates muscles are capable of producing, and analyze the data to determine factors that influence a person's grip strength. They use this information to produce a recommendation of a hand dynamometer design for a medical office specializing in physical therapy. They also consider the many other ways grip strength data is used by engineers to design everyday products.
No restrictions on your remixing, redistributing, or making derivative works. Give credit to the author, as required.
Your remixing, redistributing, or making derivatives works comes with some restrictions, including how it is shared.
Your redistributing comes with some restrictions. Do not remix or make derivative works.
Most restrictive license type. Prohibits most uses, sharing, and any changes.
Copyrighted materials, available under Fair Use and the TEACH Act for US-based educators, or other custom arrangements. Go to the resource provider to see their individual restrictions.