Construct and measure the energy efficiency and solar heat gain of a …
Construct and measure the energy efficiency and solar heat gain of a cardboard model house. Use a light bulb heater to imitate a real furnace and a temperature sensor to monitor and regulate the internal temperature of the house. Use a bright bulb in a gooseneck lamp to model sunlight at different times of the year, and test the effectiveness of windows for passive solar heating.
Determine the dew point temperature for your classroom through a hands-on experiment. …
Determine the dew point temperature for your classroom through a hands-on experiment. Use humidity and temperature probes to investigate the temperature at which it would rain in your classroom! Learn about water density and the conditions necessary to produce fog or rain.
Build your own miniature "greenhouse" out of a plastic container and plastic …
Build your own miniature "greenhouse" out of a plastic container and plastic wrap, and fill it with different things such as dirt and sand to observe the effect this has on temperature. Monitor the temperature using temperature probes and digitally plot the data on the graphs provided in the activity.
Make your own miniature greenhouse and measure the light levels at different …
Make your own miniature greenhouse and measure the light levels at different "times of day"--modeled by changing the angle of a lamp on the greenhouse--using a light sensor. Next, investigate the temperature in your greenhouse with and without a cover. Learn how a greenhouse works and how you can regulate the temperature in your model greenhouse.
Discover how electricity can be converted into other forms of energy such …
Discover how electricity can be converted into other forms of energy such as light and heat. Connect resistors and holiday light bulbs to simple circuits and monitor the temperature over time. Investigate the differences in temperature between the circuit with the resistor and the circuit using the bulb.
This is an activity about utilizing proportional mathematics to determine the height …
This is an activity about utilizing proportional mathematics to determine the height of lunar features. Learners will use the length of shadows to calculate the height of some of the lunar features. This activity is Astronomy Activity 6 in a larger resource entitled Space Update.
This is an activity about keeping astronauts safe from debris in space. …
This is an activity about keeping astronauts safe from debris in space. Learners will investigate the relationship between mass, speed, velocity, and kinetic energy in order to select the best material to be used on a space suit. They will apply an engineering design test procedure to determine impact strength of various materials. This is engineering activity 2 of 2 found in the ISS L.A.B.S. Educator Resource Guide.
This is an activity about orbital mechanics. Learners will investigate how lateral …
This is an activity about orbital mechanics. Learners will investigate how lateral velocity affects the orbit of a spacecraft such as the ISS. Mathematical extensions are provided. This is science activity 1 of 2 found in the ISS L.A.B.S. Educator Resource Guide.
This is a lesson about the technology as it relates to heat …
This is a lesson about the technology as it relates to heat transfer (conduction and convection)on the International Space Station. Learners will investigate how to build a space suit that keeps astronauts cool. This is technology activity 1 of 2 found in the ISS L.A.B.S. Educator Resource Guide.
This book contains 24 illustrated math problem sets based on a weekly …
This book contains 24 illustrated math problem sets based on a weekly series of space science problems. Each set of problems is contained on one page. The problems were created to be authentic glimpses of modern science and engineering issues, often involving actual research data. Learners will use mathematics to explore problems that include basic scales and proportions, fractions, scientific notation, algebra, and geometry.
This activity introduces measurement and scale using hands-on activities. In this activity, …
This activity introduces measurement and scale using hands-on activities. In this activity, students use the concept of similar triangles to determine the height of a tree. This activity is one of several available on an educational poster related to NASA's Space Interferometry Mission.
Monitor the temperature of a melting ice cube and use temperature probes …
Monitor the temperature of a melting ice cube and use temperature probes to electronically plot the data on graphs. Investigate what temperature the ice is as it melts in addition to monitoring the temperature of liquid the ice is submerged in.
This is an activity about the phases of the moon. Learners will …
This is an activity about the phases of the moon. Learners will view and identify images of the different phases and measure the moon's size in each. This activity is Astronomy Activity 5 in a larger resource, Space Update.
Study the motion of a toy car on a ramp and use motion sensors to digitally graph the position data and then analyze it. Make predictions about what the graphs will look like, and consider what the corresponding velocity graphs would look like.
Measure relative humidity in the air using a simple device made of …
Measure relative humidity in the air using a simple device made of a temperature sensor, a plastic bottle, and some clay. Electronically plot the data you collect on graphs to analyze and learn from it. Experiment with different materials and different room temperatures in order to explore what affects humidity.
This is an activity about satellite flight. Learners will first watch a …
This is an activity about satellite flight. Learners will first watch a video about the orbit and formation of the MMS satellites to learn about their flight configuration. After, they will research similar facts about other types of satellites. Next, learners will compute the volume of MMS' tetrahedral flight configuration and investigate how the tetrahedral volume changes as the satellites change positions. Finally, they will create a report that outlines their findings.This activity requires student access to internet accessible computers. This is lesson three as part of the MMS Mission Educator's Instructional Guide.
This is a set of three, one-page problems about the scale of …
This is a set of three, one-page problems about the scale of objects in images returned by spacecraft. Learners will measure scaled drawings using high-resolution images of the lunar and martian surfaces. Options are presented so that students may learn about the Lunar Reconnaissance Orbiter (LRO) mission through a NASA press release or by viewing a NASA eClips video [4 min.]. This activity is part of the Space Math multi-media modules that integrate NASA press releases, NASA archival video, and mathematics problems targeted at specific math standards commonly encountered in middle school.
This activity is about rocket shape and performance. Learners will test a …
This activity is about rocket shape and performance. Learners will test a rocket model and predict its motion. They will launch their rocket multiple times, make observations and record the distance it traveled. They will have the opportunity to answer a research question by collecting and analyzing data related to finding out the best nose cone length and predicting the motion of their model rockets. The lesson models the engineering design process using the 5E instructional model and includes teacher notes, vocabulary, student journal and reading.
This is a lesson about using the light from the star during …
This is a lesson about using the light from the star during an occultation event to identify the atmosphere of a planet. Learners will add and subtract light curves (presented as a series of geometrical shapes) to understand how this could occur. The activity is part of Project Spectra, a science and engineering program for middle-high school students, focusing on how light is used to explore the Solar System.
This is a lesson about density. Learners will relate the concept of …
This is a lesson about density. Learners will relate the concept of density to the density of dust in space. They will use mission data from the Student Dust Counter (SDC) interface to determine the density of dust grains in a volume of space in the Solar System in order to answer questions concerning the distribution of dust in the solar system. They will discover that space is much more sparsely populated with dust than they may have thought. Students discuss their findings with the class.
No restrictions on your remixing, redistributing, or making derivative works. Give credit to the author, as required.
Your remixing, redistributing, or making derivatives works comes with some restrictions, including how it is shared.
Your redistributing comes with some restrictions. Do not remix or make derivative works.
Most restrictive license type. Prohibits most uses, sharing, and any changes.
Copyrighted materials, available under Fair Use and the TEACH Act for US-based educators, or other custom arrangements. Go to the resource provider to see their individual restrictions.