This is a task from the Illustrative Mathematics website that is one …

This is a task from the Illustrative Mathematics website that is one part of a complete illustration of the standard to which it is aligned. Each task has at least one solution and some commentary that addresses important asects of the task and its potential use. Here are the first few lines of the commentary for this task: This task examines the mathematics behind an origami construction of a rectangle whose sides have the ratio $(\sqrt{2}:1)$. Such a rectangle is called ...

Es una guía de trabajo para construir los conceptos simetría axial y …

Es una guía de trabajo para construir los conceptos simetría axial y eje de simetría partiendo de la parte intuitiva hacia el concepto formal. En el REA se encuentran actividades para verificar las conjeturas elaboradas al respecto y determinar características de ambos conceptos. Por último, se presenta una manera de elaborar un material similar para el mismo tema o temas similares, esto pretende ser una ayuda a los docentes para que construyan sus propios REA

In this module, students learn about translations, reflections, and rotations in the …

In this module, students learn about translations, reflections, and rotations in the plane and, more importantly, how to use them to precisely define the concept of congruence. Throughout Topic A, on the definitions and properties of the basic rigid motions, students verify experimentally their basic properties and, when feasible, deepen their understanding of these properties using reasoning. All the lessons of Topic B demonstrate to students the ability to sequence various combinations of rigid motions while maintaining the basic properties of individual rigid motions. Students learn that congruence is just a sequence of basic rigid motions in Topic C, and Topic D begins the learning of Pythagorean Theorem.

Find the rest of the EngageNY Mathematics resources at https://archive.org/details/engageny-mathematics.

This lesson unit is intended to help you assess how students reason …

This lesson unit is intended to help you assess how students reason about geometry and, in particular, how well they are able to: use facts about the angle sum and exterior angles of triangles to calculate missing angles; apply angle theorems to parallel lines cut by a transversal; interpret geometrical diagrams using mathematical properties to identify similarity of triangles.

This lesson unit is intended to help you assess how well students …

This lesson unit is intended to help you assess how well students are able to: interpret a situation and represent the variables mathematically; select appropriate mathematical methods; interpret and evaluate the data generated; and communicate their reasoning clearly.

(Nota: Esta es una traducción de un recurso educativo abierto creado por …

(Nota: Esta es una traducción de un recurso educativo abierto creado por el Departamento de Educación del Estado de Nueva York (NYSED) como parte del proyecto "EngageNY" en 2013. Aunque el recurso real fue traducido por personas, la siguiente descripción se tradujo del inglés original usando Google Translate para ayudar a los usuarios potenciales a decidir si se adapta a sus necesidades y puede contener errores gramaticales o lingüísticos. La descripción original en inglés también se proporciona a continuación.)

En este módulo, los estudiantes aprenden sobre traducciones, reflexiones y rotaciones en el avión y, lo que es más importante, cómo usarlas para definir con precisión el concepto de congruencia. A lo largo del tema A, sobre las definiciones y propiedades de los movimientos rígidos básicos, los estudiantes verifican experimentalmente sus propiedades básicas y, cuando son factibles, profundicen su comprensión de estas propiedades utilizando el razonamiento. Todas las lecciones del tema B demuestran a los estudiantes la capacidad de secuenciar varias combinaciones de movimientos rígidos mientras mantienen las propiedades básicas de los movimientos rígidos individuales. Los estudiantes aprenden que la congruencia es solo una secuencia de movimientos rígidos básicos en el Tema C, y el Tema D comienza el aprendizaje del Teorema Pitagórico.

Encuentre el resto de los recursos matemáticos de Engageny en https://archive.org/details/engageny-mathematics.

English Description: In this module, students learn about translations, reflections, and rotations in the plane and, more importantly, how to use them to precisely define the concept of congruence. Throughout Topic A, on the definitions and properties of the basic rigid motions, students verify experimentally their basic properties and, when feasible, deepen their understanding of these properties using reasoning. All the lessons of Topic B demonstrate to students the ability to sequence various combinations of rigid motions while maintaining the basic properties of individual rigid motions. Students learn that congruence is just a sequence of basic rigid motions in Topic C, and Topic D begins the learning of Pythagorean Theorem.

Find the rest of the EngageNY Mathematics resources at https://archive.org/details/engageny-mathematics.

The intent of clarifying statements is to provide additional guidance for educators …

The intent of clarifying statements is to provide additional guidance for educators to communicate the intent of the standard to support the future development of curricular resources and assessments aligned to the 2021 math standards. Clarifying statements can be in the form of succinct sentences or paragraphs that attend to one of four types of clarifications: (1) Student Experiences; (2) Examples; (3) Boundaries; and (4) Connection to Math Practices.

Putting a graph on the floor using painters tape students practice translation, …

Putting a graph on the floor using painters tape students practice translation, rotation, reflection,dilation, by doing these concepts to themselves while standing in the graph.

This lesson unit is intended to help teachers assess how well students …

This lesson unit is intended to help teachers assess how well students are able to: use the area of right triangles to deduce the areas of other shapes; use dissection methods for finding areas; organize an investigation systematically and collect data; deduce a generalizable method for finding lengths and areas (The Pythagorean Theorem.)

The goal of this task is to give students experience applying and …

The goal of this task is to give students experience applying and reasoning about reflections of geometric figures using their growing understanding of the properties of rigid motions. In the case of reflecting a rectangle over a diagonal, the reflected image is still a rectangle and it shares two vertices with the original rectangle.

Students are introduced to renewable energy, including its relevance and importance to …

Students are introduced to renewable energy, including its relevance and importance to our current and future world. They learn the mechanics of how wind turbines convert wind energy into electrical energy and the concepts of lift and drag. Then they apply real-world technical tools and techniques to design their own aerodynamic wind turbines that efficiently harvest the most wind energy. Specifically, teams each design a wind turbine propeller attachment. They sketch rotor blade ideas, create CAD drawings (using Google SketchUp) of the best designs and make them come to life by fabricating them on a 3D printer. They attach, test and analyze different versions and/or configurations using a LEGO wind turbine, fan and an energy meter. At activity end, students discuss their results and the most successful designs, the aerodynamics characteristics affecting a wind turbine's ability to efficiently harvest wind energy, and ideas for improvement. The activity is suitable for a class/team competition. Example 3D rotor blade designs are provided.

This lesson unit is intended to help teachers assess how well students …

This lesson unit is intended to help teachers assess how well students are able to: recognize and visualize transformations of 2D shapes; and translate, reflect and rotate shapes, and combine these transformations. It also aims to encourage discussion on some common misconceptions about transformations.

The goal of this task is to gather together knowledge and skills …

The goal of this task is to gather together knowledge and skills from the seventh grade in a context which prepares students for the important eighth grade notion of similarity.

To learn about the concept of center of mass, students examine how …

To learn about the concept of center of mass, students examine how objects balance. They make symmetrical cut-outs of different "creatures" and experiment with how they balance on a tightrope of string. Students see the concept of center of mass at work as the creatures balance.

No restrictions on your remixing, redistributing, or making derivative works. Give credit to the author, as required.

Your remixing, redistributing, or making derivatives works comes with some restrictions, including how it is shared.

Your redistributing comes with some restrictions. Do not remix or make derivative works.

Most restrictive license type. Prohibits most uses, sharing, and any changes.

Copyrighted materials, available under Fair Use and the TEACH Act for US-based educators, or other custom arrangements. Go to the resource provider to see their individual restrictions.