This is a task from the Illustrative Mathematics website that is one …

This is a task from the Illustrative Mathematics website that is one part of a complete illustration of the standard to which it is aligned. Each task has at least one solution and some commentary that addresses important aspects of the task and its potential use.

Visually searchable database of Algebra 1 videos. Click on a problem and …

Visually searchable database of Algebra 1 videos. Click on a problem and watch the solution on YouTube. Copy and paste this material into your CMS. Videos accompany the open Elementary Algebra textbook published by Flat World Knowledge.

This lesson unit is intended to help teachers assess how well students …

This lesson unit is intended to help teachers assess how well students are able to interpret percent increase and decrease, and in particular, to identify and help students who have the following difficulties: translating between percents, decimals, and fractions; representing percent increase and decrease as multiplication; and recognizing the relationship between increases and decreases.

Four full-year digital course, built from the ground up and fully-aligned to …

Four full-year digital course, built from the ground up and fully-aligned to the Common Core State Standards, for 7th grade Mathematics. Created using research-based approaches to teaching and learning, the Open Access Common Core Course for Mathematics is designed with student-centered learning in mind, including activities for students to develop valuable 21st century skills and academic mindset.

Working With Rational Numbers Type of Unit: Concept Prior Knowledge Students should …

Working With Rational Numbers

Type of Unit: Concept

Prior Knowledge

Students should be able to:

Compare and order positive and negative numbers and place them on a number line. Understand the concepts of opposites absolute value.

Lesson Flow

The unit begins with students using a balloon model to informally explore adding and subtracting integers. With the model, adding or removing heat represents adding or subtracting positive integers, and adding or removing weight represents adding or subtracting negative integers.

Students then move from the balloon model to a number line model for adding and subtracting integers, eventually extending the addition and subtraction rules from integers to all rational numbers. Number lines and multiplication patterns are used to find products of rational numbers. The relationship between multiplication and division is used to understand how to divide rational numbers. Properties of addition are briefly reviewed, then used to prove rules for addition, subtraction, multiplication, and division.

This unit includes problems with real-world contexts, formative assessment lessons, and Gallery problems.

Students review the properties of addition and write an example for each. …

Students review the properties of addition and write an example for each. Then they apply the properties to simplify numerical expressions.Key ConceptsThe properties of addition:Commutative property of addition: Changing the order of addends does not change the sum. For any numbers a and b, a + b = b + a.Associative property of addition: Changing the grouping of addends does not change the sum. For any numbers a, b, and c, (a + b) + c = a + (b + c).Additive identity property of 0: The sum of 0 and any number is that number. For any number a, a + 0 = 0 + a = a.Existence of additive inverses: The sum of any number and its additive inverse (opposite) is 0. For any number a, a + (−a) = (−a) + a = 0.These properties allow us to manipulate expressions to make them easier to work with. For example, the associative property of addition tells us that we can regroup the expression (311+49)+59 as 311+(49 +59), making it much easier to simplify.Students must be careful to apply the commutative and associative properties only to addition expressions. For example, we cannot switch the −7 and 8 in the expression −7 − 8 to get 8 − (−7). However, if we rewrite −7 − 8 as the addition expression −7 + (−8), we can swap the addends to get −8 + (−7).Goals and Learning ObjectivesUnderstand the properties of addition.Apply the properties of addition to simplify numerical expressions.

Students critique and improve their work on the Self Check, then work …

Students critique and improve their work on the Self Check, then work on more addition and subtraction problems.Students solve problems that require them to apply their knowledge of adding and subtracting positive and negative numbers.Key ConceptsTo solve the problems in this lesson, students use their knowledge of addition and subtraction with positive and negative numbers.Goals and Learning ObjectivesUse knowledge of addition and subtraction with positive and negative numbers to write problems that meet given criteria.Assess and critique methods for subtracting negative numbers.Find values of variables that satisfy given inequalities.

Students find the distance between points on a number line by counting …

Students find the distance between points on a number line by counting and by using subtraction. They then use subtraction to find differences in temperatures.Students discover that the distance between any two points on the number line is the absolute value of their difference, and apply this idea to solve problems.Key ConceptsStudents know from earlier grades that the distance between two positive numbers on the number line can be found by subtracting the lesser number from the greater number. For example, the distance between 5 and 11 is 11 – 5, or 6. We can also state the rule for finding distance as “The distance between two positive numbers is the absolute value of their difference.” With this version of the rule, we don’t have to consider which number is greater; the result is the same either way. Using the example of 5 and 11, the distance is |11 – 5| or |5 – 11|, both of which are equal to 6.This idea extends to the entire number line, including numbers to the left of 0. That is, the distance between any two numbers is the absolute value of their difference. For example, the distance between –5 and 3 is |–5 – 3| = |–8| = 8 or |3 – (–5)| = |8| = 8, and the distance between –12 and –7 is |–12 – (–7)| = |–5| = 5 or |–7 – (–12)| = |5| = 5.Goals and Learning ObjectivesUnderstand the relationship between the distance between two points on the number line and the difference in the coordinates of those points.Find distances in real-life situations.

Students use number lines to solve addition and subtraction problems involving positive …

Students use number lines to solve addition and subtraction problems involving positive and negative fractions and decimals. They then verify that the same rules they found for integers apply to fractions and decimals as well. Finally, they solve some real-world problems.Key ConceptsThe first four lessons of this unit focused on adding and subtracting integers. Using only integers made it easier for students to create models and visualize the addition and subtraction process. In this lesson, those concepts are extended to positive and negative fractions and decimals. Students will see that the number line model and rules work for these numbers as well.Note that rational number will be formally defined in Lesson 15.Goals and Learning ObjectivesExtend models and rules for adding and subtracting integers to positive and negative fractions and decimals.Solve real-world problems involving addition and subtraction of positive and negative fractions and decimals.

This lesson unit is intended to help teachers assess how well students …

This lesson unit is intended to help teachers assess how well students are able to understand and use directed numbers in context. It is intended to help identify and aid students who have difficulties in ordering, comparing, adding, and subtracting positive and negative integers. Particular attention is paid to the use of negative numbers on number lines to explore the structures: starting temperature + change in temperature = final temperature final temperature Đ change in temperature = starting temperature final temperature Đ starting temperature = change in temperature.

No restrictions on your remixing, redistributing, or making derivative works. Give credit to the author, as required.

Your remixing, redistributing, or making derivatives works comes with some restrictions, including how it is shared.

Your redistributing comes with some restrictions. Do not remix or make derivative works.

Most restrictive license type. Prohibits most uses, sharing, and any changes.

Copyrighted materials, available under Fair Use and the TEACH Act for US-based educators, or other custom arrangements. Go to the resource provider to see their individual restrictions.