Updating search results...

29 Results

View
Selected filters:
• WY.SCI.HS.PS3.2
Educational Use
Rating
0.0 stars

The lesson begins with a demonstration introducing students to the force between two current carrying loops, comparing the attraction and repulsion between the loops to that between two magnets. After formal lecture on Ampere's law, students begin to use the concepts to calculate the magnetic field around a loop. This is applied to determine the magnetic field of a toroid, imagining a toroid as a looped solenoid.

Subject:
Applied Science
Engineering
Physical Science
Physics
Material Type:
Activity/Lab
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Eric Appelt
09/18/2014
Educational Use
Rating
0.0 stars

This lesson begins with a demonstration prompting students to consider how current generates a magnetic field and the direction of the field that is generated. Through formal lecture, students learn Biot-Savart's law in order to calculate, most simply, the magnetic field produced in the center of a circular current carrying loop. For applications, students find it is necessary to integrate the field produced over all small segments in an actual current carrying wire.

Subject:
Applied Science
Engineering
Physical Science
Physics
Material Type:
Activity/Lab
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Eric Appelt
09/18/2014
Unrestricted Use
CC BY
Rating
0.0 stars

This activity introduces the role of diffusion in supplying cells with nutrients and removing wastes.

Subject:
Life Science
Material Type:
Activity/Lab
Provider:
Concord Consortium
Provider Set:
Concord Consortium
Author:
Concord Consortium
12/11/2011
Unrestricted Use
CC BY
Rating
0.0 stars

Learn about conservation of energy with a skater dude! Build tracks, ramps and jumps for the skater and view the kinetic energy, potential energy and friction as he moves. You can also take the skater to different planets or even space!

Subject:
Physical Science
Physics
Material Type:
Simulation
Provider:
Provider Set:
PhET Interactive Simulations
Author:
Carl Wieman
Danielle Harlow
Kathy Perkins
Michael
Michael Dubson
Sam Reid
Trish Loeblein
10/03/2006
Educational Use
Rating
0.0 stars

Students experiment with an online virtual laboratory set at a skate park. They make predictions of graphs before they use the simulation to create graphs of energy vs. time under different conditions. This simulation experimentation strengths their comprehension of conservation of energy solely between gravitational potential energy and kinetic energy

Subject:
Applied Science
Engineering
Physical Science
Physics
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Joel Daniel
10/14/2015
Unrestricted Use
CC BY
Rating
0.0 stars

Learn about conservation of energy with a skater dude! Build tracks, ramps and jumps for the skater and view the kinetic energy, potential energy and friction as he moves. You can also take the skater to different planets or even space!

Subject:
Physical Science
Physics
Material Type:
Simulation
Provider:
Provider Set:
PhET Interactive Simulations
Author:
Carl Wieman
Danielle Harlow
Kathy Perkins
Michael Dubson
Patricia Loblein
Sam Reid
07/02/2008
Unrestricted Use
CC BY
Rating
0.0 stars

Students will: Predict the kinetic and potential energy of objects Design a skate park Examine how kinetic and potential energy interact with each other

Subject:
Physical Science
Physics
Material Type:
Simulation
Provider:
Provider Set:
PhET Interactive Simulations
Author:
Ariel Paul
Emily B Moore
Katherine Perkins
Noah Podolefsky
Sam Reid
Trish Loeblein
01/31/2012
Unrestricted Use
CC BY
Rating
0.0 stars

This lab is designed to help students understand the nanoscale effect of various energy inputs on the crystal lattice of a smart material, Nitinol.&nbsp;

Subject:
Chemistry
Material Type:
Activity/Lab
Author:
Integrated Nanosystems Development Institute (INDI)
07/07/2021
Educational Use
Rating
0.0 stars

This activity utilizes hands-on learning with the conservation of energy and the interaction of friction. Students use a roller coaster track and collect position data. The students then calculate velocity, and energy data. After the lab, students relate the conversion of potential and kinetic energy to the conversion of energy used in a hybrid car.

Subject:
Applied Science
Engineering
Physical Science
Physics
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Joel Daniel
09/18/2014
Educational Use
Rating
0.0 stars

Heat transfer is an important concept that is a part of everyday life yet often misunderstood by students. In this lesson, students learn the scientific concepts of temperature, heat and the transfer of heat through conduction, convection and radiation. These scientific concepts are illustrated by comparison to magical spells used in the Harry Potter stories.

Subject:
Applied Science
Engineering
Physical Science
Physics
Material Type:
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Jeremy Ardner
09/18/2014
Unrestricted Use
CC BY
Rating
0.0 stars

The High School Integrated Conceptual Science Program (ICSP) is a NGSS-aligned curriculum that utilizes the conceptual progressions model for bundling of the NGSS,&nbsp;High School Conceptual Model Course 1&nbsp;and strategies from Ambitious Science Teaching (AST) to focus on teaching practices needed to engage students in science discourse and learning.&nbsp;Course 1 is the High School Integrated Physics and Chemsitry Course.&nbsp; &nbsp;The&nbsp;goal of these units is to encourage students to continue in STEM by providing engaging and aligned curriculum. The focus of this year long course is on the first year of high school (freshman).&nbsp; While the course is designed to be taught as a collection of the units, each unit could be taught as a separate unit in a science course.&nbsp;&nbsp;A video about the new course shared its unique approach to learning and teaching. Wenatchee School District, one of the participating districts, wanted a way to share the program with the community. https://youtu.be/9AGk19YUi2oCourse 1 of the ICSP development was funded by&nbsp;Northwest Earth and Space Sciences Pipeline (NESSP) which is funded through the NASA Science Mission Directorate and housed with Washington NASA Space Grant Consortium at the University of Washington.

Subject:
Chemistry
Physical Science
Material Type:
Activity/Lab
Assessment
Full Course
Lesson
Module
Unit of Study
Author:
Carissa Haug
MECHELLE LALANNE
06/01/2020
Educational Use
Rating
0.0 stars

Through four lessons and four hands-on associated activities, this unit provides a way to teach the overarching concept of energy as it relates to both kinetic and potential energy. Within these topics, students are exposed to gravitational potential, spring potential, the Carnot engine, temperature scales and simple magnets. During the module, students apply these scientific concepts to solve the following engineering challenge: "The rising price of gasoline has many effects on the US economy and the environment. You have been contracted by an engineering firm to help design a physical energy storage system for a new hybrid vehicle for Nissan. How would you go about solving this problem? What information would you consider to be important to know? You will create a small prototype of your design idea and make a sales pitch to Nissan at the end of the unit." This module is built around the Legacy Cycle, a format that incorporates findings from educational research on how people best learn. This module is written for a first-year algebra-based physics class, though it could easily be modified for conceptual physics.

Subject:
Applied Science
Engineering
Physical Science
Physics
Material Type:
Full Course
Unit of Study
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Joel Daniel
09/18/2014
Educational Use
Rating
0.0 stars

Students are given an engineering challenge: A nearby hospital has just installed a new magnetic resonance imaging facility that has the capacity to make 3D images of the brain and other body parts by exposing patients to a strong magnetic field. The hospital wishes for its entire staff to have a clear understanding of the risks involved in working near a strong magnetic field and a basic understanding of why those risks occur. Your task is to develop a presentation or pamphlet explaining the risks, the physics behind those risks, and the safety precautions to be taken by all staff members. This 10-lesson/4-activity unit was designed to provide hands-on activities to teach end-of-year electricity and magnetism topics to a first-year accelerated or AP physics class. Students learn about and then apply the following science concepts to solve the challenge: magnetic force, magnetic moments and torque, the Biot-Savart law, Ampere's law and Faraday's law. This module is built around the Legacy Cycle, a format that incorporates findings from educational research on how people best learn.

Subject:
Applied Science
Engineering
Physical Science
Physics
Material Type:
Full Course
Unit of Study
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Eric Appelt
09/18/2014
Educational Use
Rating
0.0 stars

This lesson introduces students to the effects of magnetic fields in matter addressing permanent magnets, diamagnetism, paramagnetism, ferromagnetism, and magnetization. First students must compare the magnetic field of a solenoid to the magnetic field of a permanent magnet. Students then learn the response of diamagnetic, paramagnetic, and ferromagnetic material to a magnetic field. Now aware of the mechanism causing a solid to respond to a field, students learn how to measure the response by looking at the net magnetic moment per unit volume of the material.

Subject:
Applied Science
Engineering
Physical Science
Physics
Material Type:
Activity/Lab
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Eric Appelt
09/18/2014
Unrestricted Use
CC BY
Rating
0.0 stars

A realistic mass and spring laboratory. Hang masses from springs and adjust the spring stiffness and damping. You can even slow time. Transport the lab to different planets. A chart shows the kinetic, potential, and thermal energy for each spring.

Subject:
Physical Science
Physics
Material Type:
Simulation
Provider:
Provider Set:
PhET Interactive Simulations
Author:
Kathy Perkins
Michael Dubson
The Mortenson Family Foundation
04/26/2006
Unrestricted Use
CC BY
Rating
0.0 stars

A realistic mass and spring laboratory. Hang masses from springs and adjust the spring stiffness and damping. You can even slow time. Transport the lab to different planets. A chart shows the kinetic, potential, and thermal energy for each spring.

Subject:
Physical Science
Physics
Material Type:
Simulation
Provider:
Provider Set:
PhET Interactive Simulations
Author:
Kathy Perkins
Michael Dubson
08/02/2009
Rating
0.0 stars

Students simulate operating an iron mine, from choosing property to writing an environmental impact statement to setting up the mining operation. Chocolate chip cookies (with the chocolate chips representing iron ore) are used for this experiment. Students are challenged to operate the most profitable and environmentally sound mine they can.

Subject:
Geology
Physical Science
Material Type:
Activity/Lab
Interactive
Provider:
UCAR Staff
Provider Set:
New York State Earth Science Instructional Collection
Author:
Eric Cohen
11/06/2014
Rating
0.0 stars

In this activity, students interact with 12 models to observe emergent phenomena as molecules assemble themselves. Investigate the factors that are important to self-assembly, including shape and polarity. Try to assemble a monolayer by "pushing" the molecules to the substrate (it's not easy!). Rotate complex molecules to view their structure. Finally, create your own nanostructures by selecting molecules, adding charges to them, and observing the results of self-assembly.

Subject:
Applied Science
Chemistry
Education
Engineering
Life Science
Physical Science
Physics
Technology
Material Type:
Activity/Lab
Data Set
Interactive
Lecture Notes
Provider:
Concord Consortium
Provider Set:
Concord Consortium Collection
Author:
The Concord Consortium
12/11/2011
Unrestricted Use
CC BY
Rating
0.0 stars

The Integrated Conceptual Science Program Course 1 Integrated Physics and Chemistry is a three dimensional course based on the Conceptual Progression Model of the Next Generation Science Standards. It is designed to be used as part of a three course program that addresses all high school science performance expectations. Course 1 is designed for ninth grade students.
This resource includes the teacher materials, supporting documents, and short videos to support teachers in using the materials.
The Courses were designed using the Ambitious Science Teaching (AST) framework. It is strongly encouraged that before using these materials that you be familiar with AST. We suggest that you watch the AST Overview short video found here: https://datapuzzles.org/ambitious-science-teaching and explore this Google Slide deck that contains many resources designed to further your understanding of AST: https://docs.google.com/presentation/d/1WOUVmlm636_7i2l0GYa9JkX1TCK3NMdySfpxKN7IM7A/edit?usp=sharing

Subject:
Chemistry
Physical Science
Physics
Material Type:
Full Course
Author:
Carissa Haug
Lisa Monahan
Mechelle LaLanne
NCESD contributors
04/13/2021
Unrestricted Use
CC BY
Rating
0.0 stars

Solar energy in the form of light is available to organisms on Earth in abundance. Natural systems and other organisms have structures that function in ways to manage the interaction with and use of this energy. Using these natural examples, humans have (in the past) and continue to design and construct homes which manage solar energy in passive and active ways to reduce the need for energy from other sources. In this storyline, students will explore passive and active solar energy management through examples in the natural world. Students will use knowledge gained to design a building that maximizes the free and abundant energy gifts of the sun.

Subject:
Engineering
Environmental Science
Material Type:
Unit of Study
Author:
Pacific Education Institute