Learning Domain: Expressions and Equations

Standard: Understand that solutions to a system of two linear equations in two variables correspond to points of intersection of their graphs, because points of intersection satisfy both equations simultaneously.

Degree of Alignment:
Not Rated
(0 users)

Learning Domain: Expressions and Equations

Standard: Solve real-world and mathematical problems leading to two linear equations in two variables. For example, given coordinates for two pairs of points, determine whether the line through the first pair of points intersects the line through the second pair.

Degree of Alignment:
Not Rated
(0 users)

Learning Domain: Functions

Standard: Interpret the equation y = mx + b as defining a linear function, whose graph is a straight line; give examples of functions that are not linear. For example, the function A = s^2 giving the area of a square as a function of its side length is not linear because its graph contains the points (1,1), (2,4) and (3,9), which are not on a straight line.

Degree of Alignment:
Not Rated
(0 users)

Learning Domain: Functions

Standard: Construct a function to model a linear relationship between two quantities. Determine the rate of change and initial value of the function from a description of a relationship or from two (x, y) values, including reading these from a table or from a graph. Interpret the rate of change and initial value of a linear function in terms of the situation it models, and in terms of its graph or a table of values.

Degree of Alignment:
Not Rated
(0 users)

Cluster: Analyze and solve linear equations and pairs of simultaneous linear equations

Standard: Understand that solutions to a system of two linear equations in two variables correspond to points of intersection of their graphs, because points of intersection satisfy both equations simultaneously.

Degree of Alignment:
Not Rated
(0 users)

Cluster: Analyze and solve linear equations and pairs of simultaneous linear equations

Standard: Solve real-world and mathematical problems leading to two linear equations in two variables. For example, given coordinates for two pairs of points, determine whether the line through the first pair of points intersects the line through the second pair.

Degree of Alignment:
Not Rated
(0 users)

Cluster: Define, evaluate, and compare functions

Standard: Interpret the equation y = mx + b as defining a linear function, whose graph is a straight line; give examples of functions that are not linear. For example, the function A = s^2 giving the area of a square as a function of its side length is not linear because its graph contains the points (1,1), (2,4) and (3,9), which are not on a straight line.

Degree of Alignment:
Not Rated
(0 users)

Cluster: Use functions to model relationships between quantities

Standard: Construct a function to model a linear relationship between two quantities. Determine the rate of change and initial value of the function from a description of a relationship or from two (x, y) values, including reading these from a table or from a graph. Interpret the rate of change and initial value of a linear function in terms of the situation it models, and in terms of its graph or a table of values.

Degree of Alignment:
Not Rated
(0 users)

## Comments