Updating search results...

Data

Information that has been collected through research. Research data management, metadata, data repositories, data citations, data sharing, data reuse, and more.

154 affiliated resources

Search Resources

View
Selected filters:
Reproducible and transparent research practices in published neurology research
Unrestricted Use
CC BY
Rating
0.0 stars

The objective of this study was to evaluate the nature and extent of reproducible and transparent research practices in neurology publications. Methods The NLM catalog was used to identify MEDLINE-indexed neurology journals. A PubMed search of these journals was conducted to retrieve publications over a 5-year period from 2014 to 2018. A random sample of publications was extracted. Two authors conducted data extraction in a blinded, duplicate fashion using a pilot-tested Google form. This form prompted data extractors to determine whether publications provided access to items such as study materials, raw data, analysis scripts, and protocols. In addition, we determined if the publication was included in a replication study or systematic review, was preregistered, had a conflict of interest declaration, specified funding sources, and was open access. Results Our search identified 223,932 publications meeting the inclusion criteria, from which 400 were randomly sampled. Only 389 articles were accessible, yielding 271 publications with empirical data for analysis. Our results indicate that 9.4% provided access to materials, 9.2% provided access to raw data, 0.7% provided access to the analysis scripts, 0.7% linked the protocol, and 3.7% were preregistered. A third of sampled publications lacked funding or conflict of interest statements. No publications from our sample were included in replication studies, but a fifth were cited in a systematic review or meta-analysis. Conclusions Currently, published neurology research does not consistently provide information needed for reproducibility. The implications of poor research reporting can both affect patient care and increase research waste. Collaborative intervention by authors, peer reviewers, journals, and funding sources is needed to mitigate this problem.

Subject:
Applied Science
Biology
Health, Medicine and Nursing
Life Science
Social Science
Material Type:
Reading
Provider:
Research Integrity and Peer Review
Author:
Austin L. Johnson
Daniel Tritz
Jonathan Pollard
Matt Vassar
Shelby Rauh
Trevor Torgerson
Date Added:
08/07/2020
Reproducible research practices, transparency, and open access data in the biomedical literature, 2015–2017
Unrestricted Use
CC BY
Rating
0.0 stars

Currently, there is a growing interest in ensuring the transparency and reproducibility of the published scientific literature. According to a previous evaluation of 441 biomedical journals articles published in 2000–2014, the biomedical literature largely lacked transparency in important dimensions. Here, we surveyed a random sample of 149 biomedical articles published between 2015 and 2017 and determined the proportion reporting sources of public and/or private funding and conflicts of interests, sharing protocols and raw data, and undergoing rigorous independent replication and reproducibility checks. We also investigated what can be learned about reproducibility and transparency indicators from open access data provided on PubMed. The majority of the 149 studies disclosed some information regarding funding (103, 69.1% [95% confidence interval, 61.0% to 76.3%]) or conflicts of interest (97, 65.1% [56.8% to 72.6%]). Among the 104 articles with empirical data in which protocols or data sharing would be pertinent, 19 (18.3% [11.6% to 27.3%]) discussed publicly available data; only one (1.0% [0.1% to 6.0%]) included a link to a full study protocol. Among the 97 articles in which replication in studies with different data would be pertinent, there were five replication efforts (5.2% [1.9% to 12.2%]). Although clinical trial identification numbers and funding details were often provided on PubMed, only two of the articles without a full text article in PubMed Central that discussed publicly available data at the full text level also contained information related to data sharing on PubMed; none had a conflicts of interest statement on PubMed. Our evaluation suggests that although there have been improvements over the last few years in certain key indicators of reproducibility and transparency, opportunities exist to improve reproducible research practices across the biomedical literature and to make features related to reproducibility more readily visible in PubMed.

Subject:
Biology
Life Science
Material Type:
Reading
Provider:
PLOS Biology
Author:
John P. A. Ioannidis
Joshua D. Wallach
Kevin W. Boyack
Date Added:
08/07/2020
R for Reproducible Scientific Analysis
Unrestricted Use
CC BY
Rating
0.0 stars

This lesson in part of Software Carpentry workshop and teach novice programmers to write modular code and best practices for using R for data analysis. an introduction to R for non-programmers using gapminder data The goal of this lesson is to teach novice programmers to write modular code and best practices for using R for data analysis. R is commonly used in many scientific disciplines for statistical analysis and its array of third-party packages. We find that many scientists who come to Software Carpentry workshops use R and want to learn more. The emphasis of these materials is to give attendees a strong foundation in the fundamentals of R, and to teach best practices for scientific computing: breaking down analyses into modular units, task automation, and encapsulation. Note that this workshop will focus on teaching the fundamentals of the programming language R, and will not teach statistical analysis. The lesson contains more material than can be taught in a day. The instructor notes page has some suggested lesson plans suitable for a one or half day workshop. A variety of third party packages are used throughout this workshop. These are not necessarily the best, nor are they comprehensive, but they are packages we find useful, and have been chosen primarily for their usability.

Subject:
Applied Science
Computer Science
Information Science
Mathematics
Measurement and Data
Material Type:
Module
Provider:
The Carpentries
Author:
Adam H. Sparks
Ahsan Ali Khoja
Amy Lee
Ana Costa Conrado
Andrew Boughton
Andrew Lonsdale
Andrew MacDonald
Andris Jankevics
Andy Teucher
Antonio Berlanga-Taylor
Ashwin Srinath
Ben Bolker
Bill Mills
Bret Beheim
Clare Sloggett
Daniel
Dave Bridges
David J. Harris
David Mawdsley
Dean Attali
Diego Rabatone Oliveira
Drew Tyre
Elise Morrison
Erin Alison Becker
Fernando Mayer
François Michonneau
Giulio Valentino Dalla Riva
Gordon McDonald
Greg Wilson
Harriet Dashnow
Ido Bar
Jaime Ashander
James Balamuta
James Mickley
Jamie McDevitt-Irwin
Jeffrey Arnold
Jeffrey Oliver
John Blischak
Jonah Duckles
Josh Quan
Julia Piaskowski
Kara Woo
Kate Hertweck
Katherine Koziar
Katrin Leinweber
Kellie Ottoboni
Kevin Weitemier
Kiana Ashley West
Kieran Samuk
Kunal Marwaha
Kyriakos Chatzidimitriou
Lachlan Deer
Lex Nederbragt
Liz Ing-Simmons
Lucy Chang
Luke W Johnston
Luke Zappia
Marc Sze
Marie-Helene Burle
Marieke Frassl
Mark Dunning
Martin John Hadley
Mary Donovan
Matt Clark
Melissa Kardish
Mike Jackson
Murray Cadzow
Narayanan Raghupathy
Naupaka Zimmerman
Nelly Sélem
Nicholas Lesniak
Nicholas Potter
Nima Hejazi
Nora Mitchell
Olivia Rata Burge
Paula Andrea Martinez
Pete Bachant
Phil Bouchet
Philipp Boersch-Supan
Piotr Banaszkiewicz
Raniere Silva
Rayna Michelle Harris
Remi Daigle
Research Bazaar
Richard Barnes
Robert Bagchi
Rémi Emonet
Sam Penrose
Sandra Brosda
Sarah Munro
Sasha Lavrentovich
Scott Allen Funkhouser
Scott Ritchie
Sebastien Renaut
Thea Van Rossum
Timothy Eoin Moore
Timothy Rice
Tobin Magle
Trevor Bekolay
Tyler Crawford Kelly
Vicken Hillis
Yuka Takemon
bippuspm
butterflyskip
waiteb5
Date Added:
03/20/2017
R for Social Scientists
Unrestricted Use
CC BY
Rating
0.0 stars

Data Carpentry lesson part of the Social Sciences curriculum. This lesson teaches how to analyse and visualise data used by social scientists. Data Carpentry’s aim is to teach researchers basic concepts, skills, and tools for working with data so that they can get more done in less time, and with less pain. The lessons below were designed for those interested in working with social sciences data in R. This is an introduction to R designed for participants with no programming experience. These lessons can be taught in a day (~ 6 hours). They start with some basic information about R syntax, the RStudio interface, and move through how to import CSV files, the structure of data frames, how to deal with factors, how to add/remove rows and columns, how to calculate summary statistics from a data frame, and a brief introduction to plotting.

Subject:
Applied Science
Information Science
Mathematics
Measurement and Data
Social Science
Material Type:
Module
Provider:
The Carpentries
Author:
Angela Li
Ben Marwick
Christina Maimone
Danielle Quinn
Erin Alison Becker
Francois Michonneau
Geoffrey LaFlair
Hao Ye
Jake Kaupp
Juan Fung
Katrin Leinweber
Martin Olmos
Murray Cadzow
Date Added:
08/07/2020
R para Análisis Científicos Reproducibles
Unrestricted Use
CC BY
Rating
0.0 stars

Una introducción a R utilizando los datos de Gapminder. El objetivo de esta lección es enseñar a las programadoras principiantes a escribir códigos modulares y adoptar buenas prácticas en el uso de R para el análisis de datos. R nos provee un conjunto de paquetes desarrollados por terceros que se usan comúnmente en diversas disciplinas científicas para el análisis estadístico. Encontramos que muchos científicos que asisten a los talleres de Software Carpentry utilizan R y quieren aprender más. Nuestros materiales son relevantes ya que proporcionan a los asistentes una base sólida en los fundamentos de R y enseñan las mejores prácticas del cómputo científico: desglose del análisis en módulos, automatización tareas y encapsulamiento. Ten en cuenta que este taller se enfoca en los fundamentos del lenguaje de programación R y no en el análisis estadístico. A lo largo de este taller se utilizan una variedad de paquetes desarrolados por terceros, los cuales no son necesariamente los mejores ni se encuentran explicadas todas sus funcionalidades, pero son paquetes que consideramos útiles y han sido elegidos principalmente por su facilidad de uso.

Subject:
Applied Science
Computer Science
Information Science
Mathematics
Measurement and Data
Material Type:
Module
Provider:
The Carpentries
Author:
A. s
Alejandra Gonzalez-Beltran
Ana Beatriz Villaseñor Altamirano
Antonio
AntonioJBT
Belinda Weaver
Claudia Engel
Cynthia Monastirsky
Daniel Beiter
David Mawdsley
David Pérez-Suárez
Erin Becker
EuniceML
François Michonneau
Gordon McDonald
Guillermina Actis
Guillermo Movia
Hely Salgado
Ido Bar
Ivan Ogasawara
Ivonne Lujano
James J Balamuta
Jamie McDevitt-Irwin
Jeff Oliver
Jonah Duckles
Juan M. Barrios
Katrin Leinweber
Kevin Alquicira
Kevin Martínez-Folgar
Laura Angelone
Laura-Gomez
Leticia Vega
Marcela Alfaro Córdoba
Marceline Abadeer
Maria Florencia D'Andrea
Marie-Helene Burle
Marieke Frassl
Matias Andina
Murray Cadzow
Narayanan Raghupathy
Naupaka Zimmerman
Paola Prieto
Paula Andrea Martinez
Raniere Silva
Rayna M Harris
Richard Barnes
Richard McCosh
Romualdo Zayas-Lagunas
Sandra Brosda
Sasha Lavrentovich
Shirley Alquicira Hernandez
Silvana Pereyra
Tobin Magle
Veronica Jimenez
juli arancio
raynamharris
saynomoregrl
Date Added:
08/07/2020
Sharing Detailed Research Data Is Associated with Increased Citation Rate
Unrestricted Use
CC BY
Rating
0.0 stars

Background Sharing research data provides benefit to the general scientific community, but the benefit is less obvious for the investigator who makes his or her data available. Principal Findings We examined the citation history of 85 cancer microarray clinical trial publications with respect to the availability of their data. The 48% of trials with publicly available microarray data received 85% of the aggregate citations. Publicly available data was significantly (p = 0.006) associated with a 69% increase in citations, independently of journal impact factor, date of publication, and author country of origin using linear regression. Significance This correlation between publicly available data and increased literature impact may further motivate investigators to share their detailed research data.

Subject:
Applied Science
Health, Medicine and Nursing
Material Type:
Reading
Provider:
PLOS ONE
Author:
Douglas B. Fridsma
Heather A. Piwowar
Roger S. Day
Date Added:
08/07/2020
Social Science Workshop Overview
Unrestricted Use
CC BY
Rating
0.0 stars

Workshop overview for the Data Carpentry Social Sciences curriculum. Data Carpentry’s aim is to teach researchers basic concepts, skills, and tools for working with data so that they can get more done in less time, and with less pain. This workshop teaches data management and analysis for social science research including best practices for data organization in spreadsheets, reproducible data cleaning with OpenRefine, and data analysis and visualization in R. This curriculum is designed to be taught over two full days of instruction. Materials for teaching data analysis and visualization in Python and extraction of information from relational databases using SQL are in development. Interested in teaching these materials? We have an onboarding video and accompanying slides available to prepare Instructors to teach these lessons. After watching this video, please contact team@carpentries.org so that we can record your status as an onboarded Instructor. Instructors who have completed onboarding will be given priority status for teaching at centrally-organized Data Carpentry Social Sciences workshops.

Subject:
Applied Science
Information Science
Mathematics
Measurement and Data
Social Science
Material Type:
Module
Provider:
The Carpentries
Author:
Angela Li
Erin Alison Becker
Francois Michonneau
Maneesha Sane
Sarah Brown
Tracy Teal
Date Added:
08/07/2020
Statistics with JASP and the Open Science Framework
Unrestricted Use
CC BY
Rating
0.0 stars

This webinar will introduce the integration of JASP Statistical Software (https://jasp-stats.org/) with the Open Science Framework (OSF; https://osf.io). The OSF is a free, open source web application built to help researchers manage their workflows. The OSF is part collaboration tool, part version control software, and part data archive. The OSF connects to popular tools researchers already use, like Dropbox, Box, Github, Mendeley, and now is integrated with JASP, to streamline workflows and increase efficiency.

Subject:
Applied Science
Computer Science
Information Science
Material Type:
Lecture
Provider:
Center for Open Science
Author:
Center for Open Science
Date Added:
08/07/2020
Ten Simple Rules for Reproducible Computational Research
Unrestricted Use
CC BY
Rating
0.0 stars

Replication is the cornerstone of a cumulative science. However, new tools and technologies, massive amounts of data, interdisciplinary approaches, and the complexity of the questions being asked are complicating replication efforts, as are increased pressures on scientists to advance their research. As full replication of studies on independently collected data is often not feasible, there has recently been a call for reproducible research as an attainable minimum standard for assessing the value of scientific claims. This requires that papers in experimental science describe the results and provide a sufficiently clear protocol to allow successful repetition and extension of analyses based on original data. The importance of replication and reproducibility has recently been exemplified through studies showing that scientific papers commonly leave out experimental details essential for reproduction, studies showing difficulties with replicating published experimental results, an increase in retracted papers, and through a high number of failing clinical trials. This has led to discussions on how individual researchers, institutions, funding bodies, and journals can establish routines that increase transparency and reproducibility. In order to foster such aspects, it has been suggested that the scientific community needs to develop a “culture of reproducibility” for computational science, and to require it for published claims. We want to emphasize that reproducibility is not only a moral responsibility with respect to the scientific field, but that a lack of reproducibility can also be a burden for you as an individual researcher. As an example, a good practice of reproducibility is necessary in order to allow previously developed methodology to be effectively applied on new data, or to allow reuse of code and results for new projects. In other words, good habits of reproducibility may actually turn out to be a time-saver in the longer run. We further note that reproducibility is just as much about the habits that ensure reproducible research as the technologies that can make these processes efficient and realistic. Each of the following ten rules captures a specific aspect of reproducibility, and discusses what is needed in terms of information handling and tracking of procedures. If you are taking a bare-bones approach to bioinformatics analysis, i.e., running various custom scripts from the command line, you will probably need to handle each rule explicitly. If you are instead performing your analyses through an integrated framework (such as GenePattern, Galaxy, LONI pipeline, or Taverna), the system may already provide full or partial support for most of the rules. What is needed on your part is then merely the knowledge of how to exploit these existing possibilities.

Subject:
Applied Science
Computer Science
Information Science
Material Type:
Reading
Provider:
PLOS Computational Biology
Author:
Anton Nekrutenko
Eivind Hovig
Geir Kjetil Sandve
James Taylor
Date Added:
08/07/2020
Ten Simple Rules for the Care and Feeding of Scientific Data
Unrestricted Use
CC BY
Rating
0.0 stars

This article offers a short guide to the steps scientists can take to ensure that their data and associated analyses continue to be of value and to be recognized. In just the past few years, hundreds of scholarly papers and reports have been written on questions of data sharing, data provenance, research reproducibility, licensing, attribution, privacy, and more—but our goal here is not to review that literature. Instead, we present a short guide intended for researchers who want to know why it is important to “care for and feed” data, with some practical advice on how to do that. The final section at the close of this work (Links to Useful Resources) offers links to the types of services referred to throughout the text.

Subject:
Applied Science
Life Science
Physical Science
Social Science
Material Type:
Reading
Author:
Alberto Pepe
Aleksandra Slavkovic
Alexander W. Blocker
Alyssa Goodman
Aneta Siemiginowska
Ashish Mahabal
Christine L. Borgman
David W. Hogg
Kyle Cranmer
Margaret Hedstrom
Merce Crosas
Paul Groth
Rosanne Di Stefano
Vinay Kashyap
Yolanda Gil
Date Added:
04/24/2014
Toward Reproducible Computational Research: An Empirical Analysis of Data and Code Policy Adoption by Journals
Unrestricted Use
CC BY
Rating
0.0 stars

Journal policy on research data and code availability is an important part of the ongoing shift toward publishing reproducible computational science. This article extends the literature by studying journal data sharing policies by year (for both 2011 and 2012) for a referent set of 170 journals. We make a further contribution by evaluating code sharing policies, supplemental materials policies, and open access status for these 170 journals for each of 2011 and 2012. We build a predictive model of open data and code policy adoption as a function of impact factor and publisher and find higher impact journals more likely to have open data and code policies and scientific societies more likely to have open data and code policies than commercial publishers. We also find open data policies tend to lead open code policies, and we find no relationship between open data and code policies and either supplemental material policies or open access journal status. Of the journals in this study, 38% had a data policy, 22% had a code policy, and 66% had a supplemental materials policy as of June 2012. This reflects a striking one year increase of 16% in the number of data policies, a 30% increase in code policies, and a 7% increase in the number of supplemental materials policies. We introduce a new dataset to the community that categorizes data and code sharing, supplemental materials, and open access policies in 2011 and 2012 for these 170 journals.

Subject:
Applied Science
Computer Science
Information Science
Material Type:
Reading
Provider:
PLOS ONE
Author:
Peixuan Guo
Victoria Stodden
Zhaokun Ma
Date Added:
08/07/2020
Transparency of CHI Research Artifacts: Results of a Self-Reported Survey
Unrestricted Use
CC BY
Rating
0.0 stars

Several fields of science are experiencing a "replication crisis" that has negatively impacted their credibility. Assessing the validity of a contribution via replicability of its experimental evidence and reproducibility of its analyses requires access to relevant study materials, data, and code. Failing to share them limits the ability to scrutinize or build-upon the research, ultimately hindering scientific progress.Understanding how the diverse research artifacts in HCI impact sharing can help produce informed recommendations for individual researchers and policy-makers in HCI. Therefore, we surveyed authors of CHI 2018–2019 papers, asking if they share their papers' research materials and data, how they share them, and why they do not. The results (N = 460/1356, 34% response rate) show that sharing is uncommon, partly due to misunderstandings about the purpose of sharing and reliable hosting. We conclude with recommendations for fostering open research practices.This paper and all data and materials are freely available at https://osf.io/csy8q

Subject:
Life Science
Social Science
Material Type:
Reading
Author:
Chatchavan Wacharamanotham
Florian Echtler
Lukas Eisenring
Steve Haroz
Date Added:
08/07/2020
Transparent, Reproducible, and Open Science Practices of Published Literature in Dermatology Journals: Cross-Sectional Analysis
Unrestricted Use
CC BY
Rating
0.0 stars

Background: Reproducible research is a foundational component for scientific advancements, yet little is known regarding the extent of reproducible research within the dermatology literature. Objective: This study aimed to determine the quality and transparency of the literature in dermatology journals by evaluating for the presence of 8 indicators of reproducible and transparent research practices. Methods: By implementing a cross-sectional study design, we conducted an advanced search of publications in dermatology journals from the National Library of Medicine catalog. Our search included articles published between January 1, 2014, and December 31, 2018. After generating a list of eligible dermatology publications, we then searched for full text PDF versions by using Open Access Button, Google Scholar, and PubMed. Publications were analyzed for 8 indicators of reproducibility and transparency—availability of materials, data, analysis scripts, protocol, preregistration, conflict of interest statement, funding statement, and open access—using a pilot-tested Google Form. Results: After exclusion, 127 studies with empirical data were included in our analysis. Certain indicators were more poorly reported than others. We found that most publications (113, 88.9%) did not provide unmodified, raw data used to make computations, 124 (97.6%) failed to make the complete protocol available, and 126 (99.2%) did not include step-by-step analysis scripts. Conclusions: Our sample of studies published in dermatology journals do not appear to include sufficient detail to be accurately and successfully reproduced in their entirety. Solutions to increase the quality, reproducibility, and transparency of dermatology research are warranted. More robust reporting of key methodological details, open data sharing, and stricter standards journals impose on authors regarding disclosure of study materials might help to better the climate of reproducible research in dermatology. [JMIR Dermatol 2019;2(1):e16078]

Subject:
Applied Science
Biology
Genetics
Health, Medicine and Nursing
Life Science
Material Type:
Reading
Provider:
JMIR Dermatology
Author:
Andrew Niemann
Austin L. Johnson
Courtney Cook
Daniel Tritz
J. Michael Anderson
Matt Vassar
Date Added:
08/07/2020
Two Years Later: Journals Are Not Yet Enforcing the ARRIVE Guidelines on Reporting Standards for Pre-Clinical Animal Studies
Unrestricted Use
CC BY
Rating
0.0 stars

A study by David Baker and colleagues reveals poor quality of reporting in pre-clinical animal research and a failure of journals to implement the ARRIVE guidelines. There is growing concern that poor experimental design and lack of transparent reporting contribute to the frequent failure of pre-clinical animal studies to translate into treatments for human disease. In 2010, the Animal Research: Reporting of In Vivo Experiments (ARRIVE) guidelines were introduced to help improve reporting standards. They were published in PLOS Biology and endorsed by funding agencies and publishers and their journals, including PLOS, Nature research journals, and other top-tier journals. Yet our analysis of papers published in PLOS and Nature journals indicates that there has been very little improvement in reporting standards since then. This suggests that authors, referees, and editors generally are ignoring guidelines, and the editorial endorsement is yet to be effectively implemented.

Subject:
Applied Science
Health, Medicine and Nursing
Life Science
Material Type:
Reading
Provider:
PLOS Biology
Author:
Ana Sottomayor
David Baker
Katie Lidster
Sandra Amor
Date Added:
08/07/2020
UKRN Primers
Unrestricted Use
CC BY
Rating
0.0 stars

Open Research Action Plan, Data Sharing, Open Access, Open Code & Software, Open Resarch Awards, Preprints, Preregistration & Registered Reports

Subject:
Education
Material Type:
Reading
Author:
UKRN
Date Added:
12/21/2021
The Unix Shell
Unrestricted Use
CC BY
Rating
0.0 stars

Software Carpentry lesson on how to use the shell to navigate the filesystem and write simple loops and scripts. The Unix shell has been around longer than most of its users have been alive. It has survived so long because it’s a power tool that allows people to do complex things with just a few keystrokes. More importantly, it helps them combine existing programs in new ways and automate repetitive tasks so they aren’t typing the same things over and over again. Use of the shell is fundamental to using a wide range of other powerful tools and computing resources (including “high-performance computing” supercomputers). These lessons will start you on a path towards using these resources effectively.

Subject:
Applied Science
Computer Science
Mathematics
Measurement and Data
Material Type:
Module
Provider:
The Carpentries
Author:
Adam Huffman
Adam James Orr
Adam Richie-Halford
AidaMirsalehi
Alex Kassil
Alex Mac
Alexander Konovalov
Alexander Morley
Alix Keener
Amy Brown
Andrea Bedini
Andrew Boughton
Andrew Reid
Andrew T. T. McRae
Andrew Walker
Ariel Rokem
Armin Sobhani
Ashwin Srinath
Bagus Tris Atmaja
Bartosz Telenczuk
Ben Bolker
Benjamin Gabriel
Bertie Seyffert
Bill Mills
Brian Ballsun-Stanton
BrianBill
Camille Marini
Chris Mentzel
Christina Koch
Colin Morris
Colin Sauze
Damien Irving
Dan Jones
Dana Brunson
Daniel Baird
Daniel McCloy
Daniel Standage
Danielle M. Nielsen
Dave Bridges
David Eyers
David McKain
David Vollmer
Dean Attali
Devinsuit
Dmytro Lituiev
Donny Winston
Doug Latornell
Dustin Lang
Elena Denisenko
Emily Dolson
Emily Jane McTavish
Eric Jankowski
Erin Alison Becker
Ethan P White
Evgenij Belikov
Farah Shamma
Fatma Deniz
Filipe Fernandes
Francis Gacenga
François Michonneau
Gabriel A. Devenyi
Gerard Capes
Giuseppe Profiti
Greg Wilson
Halle Burns
Hannah Burkhardt
Harriet Alexander
Hugues Fontenelle
Ian van der Linde
Inigo Aldazabal Mensa
Jackie Milhans
Jake Cowper Szamosi
James Guelfi
Jan T. Kim
Jarek Bryk
Jarno Rantaharju
Jason Macklin
Jay van Schyndel
Jens vdL
John Blischak
John Pellman
John Simpson
Jonah Duckles
Jonny Williams
Joshua Madin
Kai Blin
Kathy Chung
Katrin Leinweber
Kevin M. Buckley
Kirill Palamartchouk
Klemens Noga
Kristopher Keipert
Kunal Marwaha
Laurence
Lee Zamparo
Lex Nederbragt
M Carlise
Mahdi Sadjadi
Marc Rajeev Gouw
Marcel Stimberg
Maria Doyle
Marie-Helene Burle
Marisa Lim
Mark Mandel
Martha Robinson
Martin Feller
Matthew Gidden
Matthew Peterson
Megan Fritz
Michael Zingale
Mike Henry
Mike Jackson
Morgan Oneka
Murray Hoggett
Nicola Soranzo
Nicolas Barral
Noah D Brenowitz
Noam Ross
Norman Gray
Orion Buske
Owen Kaluza
Patrick McCann
Paul Gardner
Pauline Barmby
Peter R. Hoyt
Peter Steinbach
Philip Lijnzaad
Phillip Doehle
Piotr Banaszkiewicz
Rafi Ullah
Raniere Silva
Robert A Beagrie
Ruud Steltenpool
Ry4an Brase
Rémi Emonet
Sarah Mount
Sarah Simpkin
Scott Ritchie
Stephan Schmeing
Stephen Jones
Stephen Turner
Steve Leak
Stéphane Guillou
Susan Miller
Thomas Mellan
Tim Keighley
Tobin Magle
Tom Dowrick
Trevor Bekolay
Varda F. Hagh
Victor Koppejan
Vikram Chhatre
Yee Mey
csqrs
earkpr
ekaterinailin
nther
reshama shaikh
s-boardman
sjnair
Date Added:
03/20/2017
Update on the endorsement of CONSORT by high impact factor journals: a survey of journal “Instructions to Authors” in 2014
Unrestricted Use
CC BY
Rating
0.0 stars

The CONsolidated Standards Of Reporting Trials (CONSORT) Statement provides a minimum standard set of items to be reported in published clinical trials; it has received widespread recognition within the biomedical publishing community. This research aims to provide an update on the endorsement of CONSORT by high impact medical journals. Methods We performed a cross-sectional examination of the online “Instructions to Authors” of 168 high impact factor (2012) biomedical journals between July and December 2014. We assessed whether the text of the “Instructions to Authors” mentioned the CONSORT Statement and any CONSORT extensions, and we quantified the extent and nature of the journals’ endorsements of these. These data were described by frequencies. We also determined whether journals mentioned trial registration and the International Committee of Medical Journal Editors (ICMJE; other than in regards to trial registration) and whether either of these was associated with CONSORT endorsement (relative risk and 95 % confidence interval). We compared our findings to the two previous iterations of this survey (in 2003 and 2007). We also identified the publishers of the included journals. Results Sixty-three percent (106/168) of the included journals mentioned CONSORT in their “Instructions to Authors.” Forty-four endorsers (42 %) explicitly stated that authors “must” use CONSORT to prepare their trial manuscript, 38 % required an accompanying completed CONSORT checklist as a condition of submission, and 39 % explicitly requested the inclusion of a flow diagram with the submission. CONSORT extensions were endorsed by very few journals. One hundred and thirty journals (77 %) mentioned ICMJE, and 106 (63 %) mentioned trial registration. Conclusions The endorsement of CONSORT by high impact journals has increased over time; however, specific instructions on how CONSORT should be used by authors are inconsistent across journals and publishers. Publishers and journals should encourage authors to use CONSORT and set clear expectations for authors about compliance with CONSORT.

Subject:
Applied Science
Health, Medicine and Nursing
Material Type:
Reading
Provider:
Trials
Author:
David Moher
Douglas G. Altman
Kenneth F. Schulz
Larissa Shamseer
Sally Hopewell
Date Added:
08/07/2020
Version Control with Git
Unrestricted Use
CC BY
Rating
0.0 stars

This lesson is part of the Software Carpentry workshops that teach how to use version control with Git. Wolfman and Dracula have been hired by Universal Missions (a space services spinoff from Euphoric State University) to investigate if it is possible to send their next planetary lander to Mars. They want to be able to work on the plans at the same time, but they have run into problems doing this in the past. If they take turns, each one will spend a lot of time waiting for the other to finish, but if they work on their own copies and email changes back and forth things will be lost, overwritten, or duplicated. A colleague suggests using version control to manage their work. Version control is better than mailing files back and forth: Nothing that is committed to version control is ever lost, unless you work really, really hard at it. Since all old versions of files are saved, it’s always possible to go back in time to see exactly who wrote what on a particular day, or what version of a program was used to generate a particular set of results. As we have this record of who made what changes when, we know who to ask if we have questions later on, and, if needed, revert to a previous version, much like the “undo” feature in an editor. When several people collaborate in the same project, it’s possible to accidentally overlook or overwrite someone’s changes. The version control system automatically notifies users whenever there’s a conflict between one person’s work and another’s. Teams are not the only ones to benefit from version control: lone researchers can benefit immensely. Keeping a record of what was changed, when, and why is extremely useful for all researchers if they ever need to come back to the project later on (e.g., a year later, when memory has faded). Version control is the lab notebook of the digital world: it’s what professionals use to keep track of what they’ve done and to collaborate with other people. Every large software development project relies on it, and most programmers use it for their small jobs as well. And it isn’t just for software: books, papers, small data sets, and anything that changes over time or needs to be shared can and should be stored in a version control system.

Subject:
Applied Science
Computer Science
Information Science
Mathematics
Measurement and Data
Material Type:
Module
Provider:
The Carpentries
Author:
Alexander G. Zimmerman
Amiya Maji
Amy L Olex
Andrew Lonsdale
Annika Rockenberger
Begüm D. Topçuoğlu
Ben Bolker
Bill Sacks
Brian Moore
Casey Youngflesh
Charlotte Moragh Jones-Todd
Christoph Junghans
David Jennings
Erin Alison Becker
François Michonneau
Garrett Bachant
Grant Sayer
Holger Dinkel
Ian Lee
Jake Lever
James E McClure
James Tocknell
Janoš Vidali
Jeremy Teitelbaum
Jeyashree Krishnan
Jimmy O'Donnell
Joe Atzberger
Jonah Duckles
Jonathan Cooper
João Rodrigues
Katherine Koziar
Katrin Leinweber
Kunal Marwaha
Kurt Glaesemann
L.C. Karssen
Lauren Ko
Lex Nederbragt
Madicken Munk
Maneesha Sane
Marie-Helene Burle
Mark Woodbridge
Martino Sorbaro
Matt Critchlow
Matteo Ceschia
Matthew Bourque
Matthew Hartley
Maxim Belkin
Megan Potterbusch
Michael Torpey
Michael Zingale
Mingsheng Zhang
Nicola Soranzo
Nima Hejazi
Oscar Arbeláez
Peace Ossom Williamson
Pey Lian Lim
Raniere Silva
Rayna Michelle Harris
Rene Gassmoeller
Rich McCue
Richard Barnes
Ruud Steltenpool
Rémi Emonet
Samniqueka Halsey
Samuel Lelièvre
Sarah Stevens
Saskia Hiltemann
Schlauch, Tobias
Scott Bailey
Simon Waldman
Stefan Siegert
Thomas Morrell
Tommy Keswick
Traci P
Tracy Teal
Trevor Keller
TrevorLeeCline
Tyler Crawford Kelly
Tyler Reddy
Umihiko Hoshijima
Veronica Ikeshoji-Orlati
Wes Harrell
Will Usher
Wolmar Nyberg Åkerström
abracarambar
butterflyskip
jonestoddcm
Date Added:
03/20/2017
Version control with the OSF
Unrestricted Use
CC BY
Rating
0.0 stars

This webinar will introduce the concept of version control and the version control features that are built into the Open Science Framework (OSF; https://osf.io). The OSF is a free, open source web application built to help researchers manage their workflows. The OSF is part collaboration tool, part version control software, and part data archive. The OSF connects to popular tools researchers already use, like Dropbox, Box, Github and Mendeley, to streamline workflows and increase efficiency. This webinar will discuss how keeping track of the different file versions is important for efficient reproducible research practices, how version control works on the OSF, and how researchers can view and download previous versions of files.

Subject:
Applied Science
Computer Science
Information Science
Material Type:
Lecture
Provider:
Center for Open Science
Author:
Center for Open Science
Date Added:
08/07/2020
The What, Why, and How of Preregistration
Unrestricted Use
CC BY
Rating
0.0 stars

More researchers are preregistering their studies as a way to combat publication bias and improve the credibility of research findings. Preregistration is at its core designed to distinguish between confirmatory and exploratory results. Both are important to the progress of science, but when they are conflated, problems arise. In this webinar, we discuss the What, Why, and How of preregistration and what it means for the future of science. Visit cos.io/prereg for additional resources.

Subject:
Applied Science
Computer Science
Information Science
Material Type:
Lecture
Provider:
Center for Open Science
Author:
Center for Open Science
Date Added:
08/07/2020