Information that has been collected through research. Research data management, metadata, data repositories, data citations, data sharing, data reuse, and more.
Is there a difference in citation rates between articles that were published …
Is there a difference in citation rates between articles that were published with links to data and articles that were not? Besides being interesting from a purely academic point of view, this question is also highly relevant for the process of furthering science. Data sharing not only helps the process of verification of claims, but also the discovery of new findings in archival data. However, linking to data still is a far cry away from being a "practice", especially where it comes to authors providing these links during the writing and submission process. You need to have both a willingness and a publication mechanism in order to create such a practice. Showing that articles with links to data get higher citation rates might increase the willingness of scientists to take the extra steps of linking data sources to their publications. In this presentation we will show this is indeed the case: articles with links to data result in higher citation rates than articles without such links. The ADS is funded by NASA Grant NNX09AB39G.
Expectations by funders for transparent and reproducible methods are on the rise. …
Expectations by funders for transparent and reproducible methods are on the rise. This session covers expectations for preregistration, data sharing, and open access results of three key funders of education research including the Institute of Education Sciences, the National Science Foundation, and Arnold Ventures. Presenters cover practical resources for meeting these requirements such as the Registry for Efficacy and Effectiveness Studies (REES), the Open Science Framework (OSF), and EdArXiv. Presenters: Jessaca Spybrook, Western Michigan University Bryan Cook, University of Virginia David Mellor, Center for Open Science
This webinar walks you through the basics of creating an OSF project, …
This webinar walks you through the basics of creating an OSF project, structuring it to fit your research needs, adding collaborators, and tying your favorite online tools into your project structure. OSF is a free, open source web application built by the Center for Open Science, a non-profit dedicated to improving the alignment between scientific values and scientific practices. OSF is part collaboration tool, part version control software, and part data archive. It is designed to connect to popular tools researchers already use, like Dropbox, Box, Github, and Mendeley, to streamline workflows and increase efficiency.
Files for this webinar are available at: https://osf.io/ewhvq/ This webinar focuses on …
Files for this webinar are available at: https://osf.io/ewhvq/ This webinar focuses on how to use the Open Science Framework (OSF) to tie together and organize multiple projects. We look at example structures appropriate for organizing classroom projects, a line of research, or a whole lab's activity. We discuss the OSF's capabilities for using projects as templates, linking projects, and forking projects as well as some considerations for using each of those capabilities when designing a structure for your own project. The OSF is a free, open source web application built to help researchers manage their workflows. The OSF is part collaboration tool, part version control software, and part data archive. The OSF connects to popular tools researchers already use, like Dropbox, Box, Github and Mendeley, to streamline workflows and increase efficiency.
This webinar will introduce how to use the Open Science Framework (OSF; …
This webinar will introduce how to use the Open Science Framework (OSF; https://osf.io) in a Classroom. The OSF is a free, open source web application built to help researchers manage their workflows. The OSF is part collaboration tool, part version control software, and part data archive. The OSF connects to popular tools researchers already use, like Dropbox, Box, Github and Mendeley, to streamline workflows and increase efficiency. This webinar will discuss how to introduce reproducible research practices to students, show ways of tracking student activity, and introduce the use of Templates and Forks on the OSF to allow students to easily make new class projects. The OSF is the flagship product of the Center for Open Science, a non-profit technology start-up dedicated to improving the alignment between scientific values and scientific practices. Learn more at cos.io and osf.io, or email contact@cos.io.
Scientific reproducibility has been at the forefront of many news stories and …
Scientific reproducibility has been at the forefront of many news stories and there exist numerous initiatives to help address this problem. We posit that a contributor is simply a lack of specificity that is required to enable adequate research reproducibility. In particular, the inability to uniquely identify research resources, such as antibodies and model organisms, makes it difficult or impossible to reproduce experiments even where the science is otherwise sound. In order to better understand the magnitude of this problem, we designed an experiment to ascertain the “identifiability” of research resources in the biomedical literature. We evaluated recent journal articles in the fields of Neuroscience, Developmental Biology, Immunology, Cell and Molecular Biology and General Biology, selected randomly based on a diversity of impact factors for the journals, publishers, and experimental method reporting guidelines. We attempted to uniquely identify model organisms (mouse, rat, zebrafish, worm, fly and yeast), antibodies, knockdown reagents (morpholinos or RNAi), constructs, and cell lines. Specific criteria were developed to determine if a resource was uniquely identifiable, and included examining relevant repositories (such as model organism databases, and the Antibody Registry), as well as vendor sites. The results of this experiment show that 54% of resources are not uniquely identifiable in publications, regardless of domain, journal impact factor, or reporting requirements. For example, in many cases the organism strain in which the experiment was performed or antibody that was used could not be identified. Our results show that identifiability is a serious problem for reproducibility. Based on these results, we provide recommendations to authors, reviewers, journal editors, vendors, and publishers. Scientific efficiency and reproducibility depend upon a research-wide improvement of this substantial problem in science today.
Lesson on OpenRefine for social scientists. A part of the data workflow …
Lesson on OpenRefine for social scientists. A part of the data workflow is preparing the data for analysis. Some of this involves data cleaning, where errors in the data are identifed and corrected or formatting made consistent. This step must be taken with the same care and attention to reproducibility as the analysis. OpenRefine (formerly Google Refine) is a powerful free and open source tool for working with messy data: cleaning it and transforming it from one format into another. This lesson will teach you to use OpenRefine to effectively clean and format data and automatically track any changes that you make. Many people comment that this tool saves them literally months of work trying to make these edits by hand.
About This Document: This manual was assembled and is being updated by …
About This Document: This manual was assembled and is being updated by Professor Benjamin Le (@benjaminle), who is on the faculty in the Department of Psychology at Haverford College. The primary goal of this text is to provide guidance to his senior thesis students on how to conduct research in his lab by working within general principles that promote research transparency using the specific open science practices described here. While it is aimed at undergraduate psychology students, hopefully it will be of use to other faculty/researchers/students who are interested in adopting open science practices in their labs.
Has there been meaningful movement toward open science practices within the social …
Has there been meaningful movement toward open science practices within the social sciences in recent years? Discussions about changes in practices such as posting data and pre-registering analyses have been marked by controversy—including controversy over the extent to which change has taken place. This study, based on the State of Social Science (3S) Survey, provides the first comprehensive assessment of awareness of, attitudes towards, perceived norms regarding, and adoption of open science practices within a broadly representative sample of scholars from four major social science disciplines: economics, political science, psychology, and sociology. We observe a steep increase in adoption: as of 2017, over 80% of scholars had used at least one such practice, rising from one quarter a decade earlier. Attitudes toward research transparency are on average similar between older and younger scholars, but the paceof change differs by field and methodology. According with theories of normal science and scientific change, the timing of increases in adoption coincides with technological innovations and institutional policies. Patterns are consistent with most scholars underestimating the trend toward open science in their discipline.
“Open Science” has become a buzzword in academic circles. However, exactly what …
“Open Science” has become a buzzword in academic circles. However, exactly what it means, why you should care about it, and – most importantly – how it can be put into practice is often not very clear to researchers. In this session of the SSDL, we will provide a brief tour d'horizon of Open Science in which we touch on all of these issues and by which we hope to equip you with a basic understanding of Open Science and a practical tool kit to help you make your research more open to other researchers and the larger interested public. Throughout the presentation, we will focus on giving you an overview of tools and services that can help you open up your research workflow and your publications, all the way from enhancing the reproducibility of your research and making it more collaborative to finding outlets which make the results of your work accessible to everyone. Absolutely no prior experience with open science is required to participate in this talk which should lead into an open conversation among us as a community about the best practices we can and should follow for a more open social science.
There is a vast body of helpful tools that can be used …
There is a vast body of helpful tools that can be used in order to foster Open Science practices. For reasons of clarity, this toolbox aims at providing only a selection of links to these resources and tools. Our goal is to give a short overview on possibilities of how to enhance your Open Science practices without consuming too much of your time.
Open Science, the movement to make scientific products and processes accessible to …
Open Science, the movement to make scientific products and processes accessible to and reusable by all, is about culture and knowledge as much as it is about technologies and services. Convincing researchers of the benefits of changing their practices, and equipping them with the skills and knowledge needed to do so, is hence an important task.This book offers guidance and resources for Open Science instructors and trainers, as well as anyone interested in improving levels of transparency and participation in research practices. Supporting and connecting an emerging Open Science community that wishes to pass on its knowledge, the handbook suggests training activities that can be adapted to various settings and target audiences. The book equips trainers with methods, instructions, exemplary training outlines and inspiration for their own Open Science trainings. It provides Open Science advocates across the globe with practical know-how to deliver Open Science principles to researchers and support staff. What works, what doesn’t? How can you make the most of limited resources? Here you will find a wealth of resources to help you build your own training events.
Open Science is a collection of actions designed to make scientific processes …
Open Science is a collection of actions designed to make scientific processes more transparent and results more accessible. Its goal is to build a more replicable and robust science; it does so using new technologies, altering incentives, and changing attitudes. The current movement towards open science was spurred, in part, by a recent “series of unfortunate events” within psychology and other sciences. These events include the large number of studies that have failed to replicate and the prevalence of common research and publication procedures that could explain why. Many journals and funding agencies now encourage, require, or reward some open science practices, including pre-registration, providing full materials, posting data, distinguishing between exploratory and confirmatory analyses, and running replication studies. Individuals can practice and encourage open science in their many roles as researchers, authors, reviewers, editors, teachers, and members of hiring, tenure, promotion, and awards committees. A plethora of resources are available to help scientists, and science, achieve these goals.
Note: This webinar was presented in Spanish. The slides presented during this …
Note: This webinar was presented in Spanish. The slides presented during this webinar can be found here:https://osf.io/6qnse/ The slides presented during this seminar can be found here: https://osf.io/6qnse/ Este seminario web se centrará en el estado de la ciencia abierta en América Latina, desde los esfuerzos de los investigadores individuales para abrir sus flujos de trabajo, herramientas para ayudar a los investigadores a ser abiertos y nuevas redes e iniciativas prometedoras en ciencia abierta. Ricardo Hartley (@ametodico) es profesor de metodología de la investigación de la Universidad Central de Chile, investigador en biología de la reproducción y en comunicación - valoración del conocimiento. Organizador de las OpenCon Santiago 2016 y 2017 y embajador COS. Erin McKiernan es profesora del Departamento de Física, Programa de Física Biomédica de la Universidad Nacional Autónoma de México. También es la fundadora del Why Open Research? proyecto, un sitio educativo para que los investigadores aprendan cómo compartir su trabajo, financiado en parte por la Fundación Shuttleworth. Fernan Federici Noe es profesor asistente e investigador de la Universidad Católica de Chile y fellow internacional del OpenPlant Synthetic Biology Center, University of Cambridge. Fernan es miembro del Global For Open Science Hardware (GOSH) y TECNOx (www.tecnox.org).
The movement towards open science is a consequence of seemingly pervasive failures …
The movement towards open science is a consequence of seemingly pervasive failures to replicate previous research. This transition comes with great benefits but also significant challenges that are likely to affect those who carry out the research, usually early career researchers (ECRs). Here, we describe key benefits, including reputational gains, increased chances of publication, and a broader increase in the reliability of research. The increased chances of publication are supported by exploratory analyses indicating null findings are substantially more likely to be published via open registered reports in comparison to more conventional methods. These benefits are balanced by challenges that we have encountered and that involve increased costs in terms of flexibility, time, and issues with the current incentive structure, all of which seem to affect ECRs acutely. Although there are major obstacles to the early adoption of open science, overall open science practices should benefit both the ECR and improve the quality of research. We review 3 benefits and 3 challenges and provide suggestions from the perspective of ECRs for moving towards open science practices, which we believe scientists and institutions at all levels would do well to consider.
In this webinar, we demonstrate the OSF tools available for contributors, labs, …
In this webinar, we demonstrate the OSF tools available for contributors, labs, centers, and institutions that support stronger collaborations. The demo includes useful practices like: contributor management, the OSF wiki as an electronic lab notebook, using OSF to manage online courses and syllabi, and more. Finally, we look at how OSF Institutions can provide discovery and intelligence gathering infrastructure so that you can focus on conducting and supporting exceptional research. The Center for Open Science’s ongoing mission is to provide community and technical resources to support your commitments to rigorous, transparent research practices. Visit cos.io/institutions to learn more.
Journals are exploring new approaches to peer review in order to reduce …
Journals are exploring new approaches to peer review in order to reduce bias, increase transparency and respond to author preferences. Funders are also getting involved. If you start reading about the subject of peer review, it won't be long before you encounter articles with titles like Can we trust peer review?, Is peer review just a crapshoot? and It's time to overhaul the secretive peer review process. Read some more and you will learn that despite its many shortcomings – it is slow, it is biased, and it lets flawed papers get published while rejecting work that goes on to win Nobel Prizes – the practice of having your work reviewed by your peers before it is published is still regarded as the 'gold standard' of scientific research. Carry on reading and you will discover that peer review as currently practiced is a relatively new phenomenon and that, ironically, there have been remarkably few peer-reviewed studies of peer review.
This lesson is part of Software Carpentry workshops and teach an introduction …
This lesson is part of Software Carpentry workshops and teach an introduction to plotting and programming using python. This lesson is an introduction to programming in Python for people with little or no previous programming experience. It uses plotting as its motivating example, and is designed to be used in both Data Carpentry and Software Carpentry workshops. This lesson references JupyterLab, but can be taught using a regular Python interpreter as well. Please note that this lesson uses Python 3 rather than Python 2.
Objective To investigate the replication validity of biomedical association studies covered by …
Objective To investigate the replication validity of biomedical association studies covered by newspapers. Methods We used a database of 4723 primary studies included in 306 meta-analysis articles. These studies associated a risk factor with a disease in three biomedical domains, psychiatry, neurology and four somatic diseases. They were classified into a lifestyle category (e.g. smoking) and a non-lifestyle category (e.g. genetic risk). Using the database Dow Jones Factiva, we investigated the newspaper coverage of each study. Their replication validity was assessed using a comparison with their corresponding meta-analyses. Results Among the 5029 articles of our database, 156 primary studies (of which 63 were lifestyle studies) and 5 meta-analysis articles were reported in 1561 newspaper articles. The percentage of covered studies and the number of newspaper articles per study strongly increased with the impact factor of the journal that published each scientific study. Newspapers almost equally covered initial (5/39 12.8%) and subsequent (58/600 9.7%) lifestyle studies. In contrast, initial non-lifestyle studies were covered more often (48/366 13.1%) than subsequent ones (45/3718 1.2%). Newspapers never covered initial studies reporting null findings and rarely reported subsequent null observations. Only 48.7% of the 156 studies reported by newspapers were confirmed by the corresponding meta-analyses. Initial non-lifestyle studies were less often confirmed (16/48) than subsequent ones (29/45) and than lifestyle studies (31/63). Psychiatric studies covered by newspapers were less often confirmed (10/38) than the neurological (26/41) or somatic (40/77) ones. This is correlated to an even larger coverage of initial studies in psychiatry. Whereas 234 newspaper articles covered the 35 initial studies that were later disconfirmed, only four press articles covered a subsequent null finding and mentioned the refutation of an initial claim. Conclusion Journalists preferentially cover initial findings although they are often contradicted by meta-analyses and rarely inform the public when they are disconfirmed.
No restrictions on your remixing, redistributing, or making derivative works. Give credit to the author, as required.
Your remixing, redistributing, or making derivatives works comes with some restrictions, including how it is shared.
Your redistributing comes with some restrictions. Do not remix or make derivative works.
Most restrictive license type. Prohibits most uses, sharing, and any changes.
Copyrighted materials, available under Fair Use and the TEACH Act for US-based educators, or other custom arrangements. Go to the resource provider to see their individual restrictions.