Updating search results...

Problem-Based Learning

610 affiliated resources

Search Resources

View
Selected filters:
Construct and Test Roofs for Different Climates
Read the Fine Print
Educational Use
Rating
0.0 stars

We design and create objects to make our lives easier and more comfortable. The houses in which we live are excellent examples of this. Depending on your local climate, the features of your house have been designed to satisfy your particular environmental needs: protection from hot, cold, windy and/or rainy weather. In this activity, students design and build model houses, then test them against various climate elements, and then re-design and improve them. Using books, websites and photos, students learn about the different types of roofs found on various houses in different environments throughout the world.

Subject:
Applied Science
Architecture and Design
Engineering
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Abigail T. Waltrous
Denise W. Carlson
Martha Cyr
Date Added:
09/18/2014
Constructivist Learning Environment (CLE)
Unrestricted Use
CC BY
Rating
0.0 stars

The (Advanced Instructional Design) course provides students with the knowledge and skills for designing and facilitating highly contextualized, engaging, and meaningful learning experiences based on the principles of constructivism, situated cognition, and connectivism. Readings expose students to a range of epistemological and theoretical perspectives as evidenced by instructional design literature and applications.The focus is on grounded or theory-based design. The course emphasizes the design of online or technology-supported learning environments (TSLEs) using a variety of pedagogical models such as situated learning, anchored instruction, problem-based learning, cognitive apprenticeship, and cognitive flexibility hypertext.

Subject:
Education
Educational Technology
Material Type:
Module
Author:
Maimoona Al Abri
Date Added:
02/12/2019
Cooking Contest
Read the Fine Print
Educational Use
Rating
0.0 stars

In this Cyberchase video segment, Matt uses subtraction to help Digit figure out how much time he has left in a cooking contest with Hacker.

Subject:
Mathematics
Physical Science
Physics
Material Type:
Lecture
Provider:
PBS LearningMedia
Provider Set:
PBS Learning Media: Multimedia Resources for the Classroom and Professional Development
Author:
U.S. Department of Education
WNET
Date Added:
09/22/2008
Cooking with the Sun
Read the Fine Print
Educational Use
Rating
0.0 stars

Students learn about using renewable energy from the Sun for heating and cooking as they build and compare the performance of four solar cooker designs. They explore the concepts of insulation, reflection, absorption, conduction and convection.

Subject:
Applied Science
Engineering
Physical Science
Physics
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Denise Carlson
Geoffrey Hill
Jeff Lyng
Jessica Butterfield
Jessica Todd
Malinda Schaefer Zarske
Sabre Duren
Xochitl Zamora-Thompson
Date Added:
10/14/2015
Cool Views
Read the Fine Print
Educational Use
Rating
0.0 stars

Students learn the meaning of preservation and conservation and identify themselves and others as preservationists or conservationists in relation to specific environmental issues. They use Venn diagrams to clarify the similarities and differences in viewpoints. They see how an environmental point-of-view affects the approach to an engineering problem.

Subject:
Applied Science
Engineering
Environmental Science
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Amy Kolenbrander
Janet Yowell
Jessica Todd
Malinda Schaefer Zarske
Date Added:
10/14/2015
Core Description, Stratigraphic Correlation, and Mapping: A capstone project for an undergraduate course in Sedimentary Geology
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This project is intended as a long-term (3 weeks -- 1 month) lab exercise near the end of a combined Stratigraphy/Sedimentology course. The project utilizes real world data provided by CONSOL Energy of Pittsburgh, PA, and the West Virginia Geological and Economic Survey. This project has been assigned once and is being revised. Instructions have been left somewhat vague in an attempt to force students into discovering some of the more mechanical details of this process themselves.

By the latter third of the course, students have described sedimentary rocks in detail and have constructed vertical sections of rock at several outcrops around campus. The course is moving from Sedimentology/Petrology into Stratigraphy. This project is designed to illustrate the basic principles of lithostratigraphy, which are covered concurrently in the lecture portion of the class.

The project 'unfurls' over several weeks. If students are provided with the entire project at one time they generally get overwhelmed, so the project is presented piecemeal, allowing the students to expand the project as they complete one section.

Step 1: Core description 40 feet of core from the Conemaugh Group of southwestern Pennsylvania is made available to the students. They must describe the core, define lithologic units, identify specific sedimentary structures, and construct a stratigraphic column. (Students struggle with detail versus efficiency of completion, given one full lab period (3 hours) and a week to complete the assignment, many students will get lost in the detail)

The goal is to build familiarity with the type of data available to geologists as they go about constructing maps for resource estimates. Additionally, the lithologies present in this core will be similar to those described in the geologist and drilling logs necessary to complete the next step.

Each step is evaluated independently in this step concern is primarily with identification of basic lithologies (coal, sandstone, shale, limestone).

Step 2: construction of strip logs for 25 core holes in northern West Virginia. Students are provided with a location map, logs for 25 holes, and elevation data. They must construct strip logs suitable for correlation, deciding upon scale and detail of presentation. Students are provided with a CD including the location map and a .pdf for each drill record.

The logs vary between the simplicity of driller data (60' of "blue" shale) and the detail of geologist descriptions, students must balance the detail and simplicity. Additionally, students were faced with "long" logs (i.e. greater than 500') and "short" logs (i.e. less than 100'). This turned out to be extremely difficult, some students got very lost, producing long detailed logs that left them without much time for the last two steps.

Students are again provided with a week to construct the strip logs, including the lab time for the week. Strip logs are evaluated for detail, accuracy, and utility (in many cases too much detail can be as confusing as too little).

Step 3: construction of stratigraphic cross sections. The first time this project was assigned, there was little guidance provided to students beyond "choosing logs that covered the largest stratigraphic interval." This exceeded the grasp of most students so additional guidance will be provided in the next iteration of this project. A generalized stratigraphic column illustrating the basic characteristics of the Monongahela and Conemaugh groups will be provided to assist students with recognition of the basic formations.

Students will be required to construct a stratigraphic cross section through selected wells on the west side of the project area. This cross section will demonstrate the use of marker beds and the lateral continuity of stratigraphic units.

The second cross section will run east-west onto the western flank of the Chestnut Ridge anticline. The datum for this cross section will be surface elevation. This cross section will illustrate the problems of stratigraphic correlation when combined with geological structures. The rock becomes consistently older as one proceeds towards the axis of the anticline. The prominent red beds and the absence of coals, in the eastern portion of the map area indicate the presence of the Chestnut Ridge Anticline.

Evaluation of the cross sections will be based upon the accuracy of the correlations. Students are allowed a week to produce cross sections (including lab). The stratigraphic cross section should accurately delineate the Redstone, Pittsburgh, and Sewickley coals. These occur in sequence and are fairly easy to identify. Successful completion of the east-west cross section will require identification of the approximate stratigraphic position of the Monongahela-Conemaugh contact.

Step 4: construction of isopach maps. Students are then required to identify specific coal and sandstone units within their cross sections, correlate those across the map region and construct isopach maps of those units.

This requires that the students now extend what they have learned from the previous three weeks, extend those correlations to the core holes not included in the basic stratigraphic analysis. The thickness of the coal and sandstone should be identified and isopach maps constructed.

The first iteration of this project produced problems similar to those encountered in step 3. Better guidance and evaluation of the cross sections and allowing students less input on the choice of stratigraphic units to isopach should reduce the confusion.

Step 5: (optional) Interpretation and report writing : the first iteration of this project was running concurrently with a term paper. Instead of two separate projects, an interpretive report will be required. This is still in the planning stage and has not been assigned to students.

(Note: this resource was added to OER Commons as part of a batch upload of over 2,200 records. If you notice an issue with the quality of the metadata, please let us know by using the 'report' button and we will flag it for consideration.)

Subject:
Biology
Life Science
Material Type:
Lesson Plan
Provider:
Science Education Resource Center (SERC) at Carleton College
Provider Set:
Teach the Earth
Author:
David Matchen
Date Added:
08/28/2019
Creating Peaceful Change
Conditional Remix & Share Permitted
CC BY-NC
Rating
0.0 stars

While studying the Articles of Confederation government and the Constitutional Convention in this problem-based learning module, the students will determine the benefits of peacefully changing an inept government.  They will deduce the crucial steps needed for peaceful change to happen within a society.  An area of research will be chosen to help solve a problem critical to the students’ middle school lives.  Feedback will be gathered through a video interview or a Google Form survey of crucial stakeholders.  Students will research the alternatives to improve upon their selected problem.  Students will present their findings to a decision maker and wait to receive feedback.

Subject:
English Language Arts
Social Science
Material Type:
Lesson Plan
Author:
Blended Learning Teacher Practice Network
Date Added:
11/22/2017
Creative Problem Solving and Decision making
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

Explore complex, multi-actor systems in which one factor influences all other factors. For instance, how innovative energy technologies merge into the existing energy system, or how new transport possibilities impact current processes. Armed with this information, learn to decide whether they should be further developed, consider possible negative results and weigh associated costs.

There are multiple ways to make decisions, but one way proven to be very useful is the analytical approach – a methodology for making the problem explicit and rationalising the different potential solutions. In short: analysis based support of decision making, design and implementation of solutions.

Creative Problem Solving and Decision Making as a course teaches you this method.

Subject:
Applied Science
Engineering
Material Type:
Full Course
Provider:
Delft University of Technology
Provider Set:
TU Delft OpenCourseWare
Author:
Dr.ir. C. van Daalen
Prof. A. de Haan
Date Added:
07/31/2018
Curiosity Killed the App
Read the Fine Print
Educational Use
Rating
0.0 stars

Students gain experience with the software/system design process, closely related to the engineering design process, to solve a problem. First, they learn about the Mars Curiosity rover and its mission, including the difficulties that engineers must consider and overcome to operate a rover remotely. Students observe a simulation of a robot being controlled remotely. These experiences guide discussion on how the design process is applied in these scenarios. The lesson culminates in a hands-on experience with the design process as students simulate the remote control of a rover. In the associated activity, students gain further experience with the design process by creating an Android application using App Inventor to control one aspect of a remotely controlled vehicle. (Note: The lesson requires a LEGO® MINDSTORMS® Education NXT base set.)

Subject:
Applied Science
Computer Science
Computing and Information
Education
Engineering
Material Type:
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Brian Sandall
Rich Powers
Date Added:
09/18/2014
Current Liabilities (Notes, Sales Tax, & Payroll Taxes)
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

Problem based accounting learning activity for notes and interest payable, sales tax payable, and payroll.

Subject:
Accounting
Business and Communication
Material Type:
Activity/Lab
Provider:
Science Education Resource Center (SERC) at Carleton College
Provider Set:
Starting Point (SERC)
Author:
Susan Moncada
Date Added:
08/28/2012
Cutting Through Soil
Read the Fine Print
Educational Use
Rating
0.0 stars

Students pretend they are agricultural engineers during the colonial period and design a miniature plow that cuts through a "field" of soil. They are introduced to the engineering design process and learn of several famous historical figures who contributed to plow design.

Subject:
Agriculture
Applied Science
Career and Technical Education
Engineering
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Jacob Crosby
Janet Yowell
Malinda Schaefer Zarske
Date Added:
10/14/2015
Deadly Droughts
Conditional Remix & Share Permitted
CC BY-NC
Rating
0.0 stars

In this project, you will explore a real-world problem, and then work through a series of steps to analyze that problem, research ways the problem could be solved, then propose a possible solution to that problem. Often, there are no specific right or wrong solutions, but sometimes one particular solution may be better than others. The key is making sure you fully understand the problem, have researched some possible solutions, and have proposed the solution that you can support with information / evidence.Begin by reading the problem statement in Step 1. Take the time to review all the information provided in the statement, including exploring the websites, videos and / or articles that are linked. Then work on steps 2 through 8 to complete this problem-based learning experience.

Subject:
Physical Science
Material Type:
Lesson Plan
Author:
Bonnie Waltz
Deanna Mayers
Tracy Rains
Date Added:
10/10/2017
Deep  Learning for CyberSecurity
Unrestricted Use
CC BY
Rating
0.0 stars

Deep Learning For CyberSecurityDeep learning, a subfield of AI based on multiple layers of artificial neural networks, has established a key role in solving complicated cybersecurity problems due to its ability to manage complex data structures, its automatic feature extraction, and its efficiency in recognizing patterns and correlations

Subject:
Computer Science
Material Type:
Reading
Author:
SWETHA A
Date Added:
03/30/2023
Deformation: Nanocomposite Compression
Read the Fine Print
Educational Use
Rating
0.0 stars

Students learn about nanocomposites, compression and strain as they design and program robots that compress materials. Student groups conduct experiments to determine how many LEGO MINDSTORMS(TM) NXT motor rotations it takes to compress soft nanocomposites, including mini marshmallows, Play-Doh®, bread and foam. They measure the length and width of their nanocomposite objects before and after compression to determine the change in length and width as a function of motor rotation.

Subject:
Applied Science
Architecture and Design
Engineering
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Jennifer S. Haghpanah
Date Added:
09/18/2014
Design Thinking Crash Course (3rd - 12th Grade) Adaptable Lesson Plan Outline
Conditional Remix & Share Permitted
CC BY-SA
Rating
0.0 stars

This is a highly adaptable outline for how design thinking could be introduced to your learners over a multi-day project. This plan works best if students are divided up into groups of 3-4 for all work except the introduction to each concept at the beginning of class. Learners should stay in the same group for the whole class.

Includes pre-work links, general instructions to guide planning for each day, design thinking student handouts, and multi-grade NGSS standards linked to design thinking.

Subject:
Applied Science
Engineering
Material Type:
Lesson Plan
Teaching/Learning Strategy
Author:
Columbia Gorge STEM Hub
Date Added:
08/13/2020
Design a Net-Zero Energy Classroom
Read the Fine Print
Educational Use
Rating
0.0 stars

Students create a concept design of their very own net-zero energy classroom by pasting renewable energy and energy-efficiency items into and around a pretend classroom on a sheet of paper. They learn how these items (such as solar panels, efficient lights, computers, energy meters, etc.) interact to create a learning environment that produces as much energy as it uses.

Subject:
Applied Science
Engineering
Environmental Science
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Janet Yowell
Malinda Schaefer Zarske
William Surles
Date Added:
10/14/2015
Design and Fly a Kite
Read the Fine Print
Educational Use
Rating
0.0 stars

Students learn how to use wind energy to combat gravity and create lift by creating their own tetrahedral kites capable of flying. They explore different tetrahedron kite designs, learning that the geometry of the tetrahedron shape lends itself well to kites and wings because of its advantageous strength-to-weight ratio. Then they design their own kites using drinking straws, string, lightweight paper/plastic and glue/tape. Student teams experience the full engineering design cycle as if they are aeronautical engineers—they determine the project constraints, research the problem, brainstorm ideas, select a promising design and build a prototype; then they test and redesign to achieve a successful flying kite. Pre/post quizzes and a worksheet are provided.

Subject:
Geometry
Mathematics
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Joshua T. Claypool
Date Added:
02/17/2017
Designing a sedimentary geology course around field-based class projects that yield publishable research
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

Related Links

Supplement for this course


Field-based research projects are the focal point for my course in sedimentary geology. For each offering of the course, projects are selected which will enable students to engage in authentic research and learn fundamental principles of sedimentary geology at the same time. Projects have addressed problems as diverse as sedimentologic processes, paleoenvironmental interpretation, stratigraphic correlation between outcrops and the nature of contacts between units. Each semester, the specific content of the course, how the content is organized, which readings are chosen and selection of laboratory experiences are dictated by the nature of the specific project and are planned to support students in their work on the project. Less content may be "covered" with this approach and topics may not follow a "traditional" order (see syllabus), but students' depth of understanding, skills in scientific reasoning, sense of accomplishment, and growth in confidence are greatly enhanced. Class projects from half of the past four offerings of the course culminated in the presentation of three posters at regional GSA conferences. Results of the other two semesters were not submitted for presentation because the instructor failed to identify problems of adequate significance for the class to investigate. However, these projects did yield data which may be useful in future projects.

Field projects must be chosen carefully so that they a) have the potential to yield results of scientific significance, and b) can be completed within the time-frame of one semester. In addition, it is essential to provide students with experiences that enable them to develop the expertise necessary to gather and make sense of the data. To ensure these conditions, the faculty member should be involved actively as a collaborator in the project. Therefore it is mutually beneficial if the class project is related to the faculty member's research or to a topic of interest to him/her. Guidelines for the development of successful projects are available in the Instructor's Notes file.

(Note: this resource was added to OER Commons as part of a batch upload of over 2,200 records. If you notice an issue with the quality of the metadata, please let us know by using the 'report' button and we will flag it for consideration.)

Subject:
Biology
Geology
Life Science
Physical Science
Material Type:
Activity/Lab
Lesson Plan
Provider:
Science Education Resource Center (SERC) at Carleton College
Provider Set:
Teach the Earth
Author:
James Ebert
Date Added:
08/27/2020
Determining What Controls the Temperature of the Land Surface
Read the Fine Print
Rating
0.0 stars

In this problem-based learning (PBL) activity, students take on the role of a student research scientist and explore the role of solar energy in determining climate, focusing on the urban heat island effect. Students conduct research and compare temperatures between two cities, and determine the factors that are responsible for the difference exhibited between them. The lesson is supported by teacher notes, answer key, glossary and an appendix with information about using PBL in the classroom. This is the third of three activities in Investigating the Climate System: Energy, a Balancing Act, and serves as an authentic assessment for all three modules.

Subject:
Atmospheric Science
Geoscience
Oceanography
Physical Science
Material Type:
Activity/Lab
Lesson Plan
Provider:
NASA
Provider Set:
NASA Wavelength
Date Added:
11/05/2014
Developing Sound Aligned Assessments and Rubrics
Conditional Remix & Share Permitted
CC BY-NC
Rating
0.0 stars

Are we teaching what we think we are teaching?""Are students learning what they are supposed to be learning?""Is there a way to teach the subject better, therefore promoting better learning?"In problem based learning, assessment needs to not only reflect the learning process but the content being learned as well.This online learning module will explore the following learning targets: •Identify how formative and summative classroom assessments are integral to instruction.•Recognize and develop high-quality performance assessments for evaluating student work.•Recognize and develop high-quality rubrics for evaluating student work.

Subject:
Career and Technical Education
Education
Educational Technology
Elementary Education
Special Education
Material Type:
Lesson Plan
Author:
Blended Learning Teacher Practice Network
Date Added:
03/27/2018