In this activity students will practice ordering food, discussing their meal, and paying for their meal.
- Subject:
- Languages
- Material Type:
- Activity/Lab
- Lesson Plan
- Author:
- The Pathways Project At Boise State
- Date Added:
- 07/26/2023
In this activity students will practice ordering food, discussing their meal, and paying for their meal.
Students will play a written version of the game telephone, and will determine what sorts of communication is effective with limited information, if any. This lesson is part of a media unit curated at our Digital Citizenship website, "Who Am I Online?".
To pique students’ curiosity and anchor the learning for the unit in the visible and concrete, students start with an experience of observing and analyzing a bath bomb as it fizzes and eventually disappears in the water. Their observations and questions about what is going on drive learning that digs into a series of related phenomena as students iterate and improve their models depicting what happens during chemical reactions. By the end of the unit, students have a firm grasp on how to model simple molecules, know what to look for to determine if chemical reactions have occurred, and apply their knowledge to chemical reactions to show how mass is conserved when atoms are rearranged.
In this 21-day unit, students are introduced to the anchoring phenomenon—a flameless heater in a Meal, Ready-to-Eat (MRE) that provides hot food to people by just adding water. Students explore the inside of an MRE flameless heater, then do investigations to collect evidence to support the idea that this heater and another type of flameless heater are undergoing chemical reactions as they get warm. Students have an opportunity to reflect on the engineering design process, defining stakeholders, and refining the criteria and constraints for the design solution.
This unit is part of the OpenSciEd core instructional materials for middle school.
This unit on metabolic reactions in the human body starts out with students exploring a real case study of a middle-school girl named M’Kenna, who reported some alarming symptoms to her doctor.
Students investigate data specific to M’Kenna’s case in the form of doctor’s notes, endoscopy images and reports, growth charts, and micrographs. They also draw from their results from laboratory experiments on the chemical changes involving the processing of food and from digital interactives to explore how food is transported, transformed, stored, and used across different body systems in all people.
Students figure out that they can trace all food back to plants, including processed and synthetic food. They obtain and communicate information to explain how matter gets from living things that have died back into the system through processes done by decomposers. Students finally explain that the pieces of their food are constantly recycled between living and nonliving parts of a system.
How does changing an ecosystem affect what lives there? This unit on ecosystem dynamics and biodiversity begins with students reading headlines that claim that the future of orangutans is in peril and that the purchasing of chocolate may be the cause. Students then examine the ingredients in popular chocolate candies and learn that one of these ingredients--palm oil--is grown on farms near the rainforest where orangutans live. This prompts students to develop initial models to explain how buying candy could impact orangutans.
This unit is part of the OpenSciEd core instructional materials for middle school.
These lesson plans and activities were developed by Janine Darragh, Gina Petrie, and Stan Pichinevskiy and were previously located on the Reaching for English app. Created for K-12 English teachers in Nicaragua, the materials may be used and adapted for any country's specific context and needs.
Contains cover sheet and teacher example/artifact.
Lesson designed for a 7th Grade ELA Deaf Education class room. Discusses the differences between fiction and non-fiction in literature as well as how to use the title and cover of the book to create an educated guess on whether the book is fiction or non-fiction. The lesson includes a learning center in which students apply what they have learned into a practice in which they organize characteristics of fiction and nonfiction into their appropriate category.
The purpose of this template is to allow the user to unpack the 7th grade visual art National Core Arts Standards (NCAS) into task-specific or task-neutral learning targets that then can be used during instruction and/or within an assessment tool like a rubric.
The Unpacking Process:
1. Take a look at the performance standard (7th grade) and pull out the nouns, or what students need to know.
2. Next pull out what students need to be able to do (the verbs).
3. Write learning targets or I can statements. When writing ask yourself, “What does this look like in student work?”
Students will be reading and writing myths. They will follow the structure of short stories and eventually publish their work.
The 7th grade poetry unit gives an in depth approach to poetry involving the four strands within the core. I've included worksheets, rubrics, and answers keys where applicable. I have also used literature examples from the core.
Oh, no! I’ve dropped my phone! Most of us have experienced the panic of watching our phones slip out of our hands and fall to the floor. We’ve experienced the relief of picking up an undamaged phone and the frustration of the shattered screen. This common experience anchors learning in the Contact Forces unit as students explore a variety of phenomena to figure out, “Why do things sometimes get damaged when they hit each other?”
Student questions about the factors that result in a shattered cell phone screen lead them to investigate what is really happening to any object during a collision. They make their thinking visible with free-body diagrams, mathematical models, and system models to explain the effects of relative forces, mass, speed, and energy in collisions. Students then use what they have learned about collisions to engineer something that will protect a fragile object from damage in a collision. They investigate which materials to use, gather design input from stakeholders to refine the criteria and constraints, develop micro and macro models of how their solution is working, and optimize their solution based on data from investigations. Finally, students apply what they have learned from the investigation and design to a related design problem.
In this unit, students develop ideas related to how sounds are produced, how they travel through media, and how they affect objects at a distance. Their investigations are motivated by trying to account for a perplexing anchoring phenomenon — a truck is playing loud music in a parking lot and the windows of a building across the parking lot visibly shake in response to the music.
This unit launches with a slow-motion video of a speaker as it plays music. Students dissect speakers to explore the inner workings, and engineer homemade cup speakers to manipulate the parts of the speaker. They identify that most speakers have the same parts–a magnet, a coil of wire, and a membrane. Students investigate each of these parts to figure out how they work together in the speaker system.
How are we connected to the patterns we see in the sky and space? Students develop models for the Earth-Sun and Earth-Sun-Moon systems that explain some of the patterns in the sky that they have identified, including seasons, eclipses, and lunar phases. They investigate a series of related phenomena motivated by their questions and ideas for investigations.
This unit is part of the OpenSciEd core instructional materials for middle school.