This is an activity on apparent sizes and apparent angles, related to …
This is an activity on apparent sizes and apparent angles, related to understanding how distance affects what we observe in outer space (the sun, moon, stars, or planets).
This guided inquiry activity has students using models to create variations of …
This guided inquiry activity has students using models to create variations of alignment of the Earth, Moon, and Sun. By varying their arrangement, students will discover how the positions of the Earth, Moon and Sun interact, how shadows can be cast on the Moon and on the Earth, and how Earth's view of the lit portion of the Moon changes.
The Foothill College AstroSims project is ensuring continued access to astro-education simulations …
The Foothill College AstroSims project is ensuring continued access to astro-education simulations past the deprecation of Java and Flash. This site includes:
* re-implementations in HTML5/Javascript of existing astro-education simulations, * new simulations of previously unaddressed topics, and * a frequently updated list of astro-education simulations.
This course focuses on three particularly interesting areas of astronomy that are …
This course focuses on three particularly interesting areas of astronomy that are advancing very rapidly: Extra-Solar Planets, Black Holes, and Dark Energy. Particular attention is paid to current projects that promise to improve our understanding significantly over the next few years. The course explores not just what is known, but what is currently not known, and how astronomers are going about trying to find out.
GEOGRAPHY-BASICS-SERIES-I (WITH RESPECT TO SOLAR SYSTEM)TIP FOR THE DAY: WE WILL ACHIEVE …
GEOGRAPHY-BASICS-SERIES-I (WITH RESPECT TO SOLAR SYSTEM)TIP FOR THE DAY: WE WILL ACHIEVE A GOAL (LEARN UNDERSTAND AND APPLY NOT CRAM)Must Visit:https://www.n...
The purpose of this lesson is to teach the students about how …
The purpose of this lesson is to teach the students about how a spacecraft gets from the surface of the Earth to Mars. The lesson first investigates rockets and how they are able to get us into space. Finally, the nature of an orbit is discussed as well as how orbits enable us to get from planet to planet specifically from Earth to Mars.
In the age of publicly funded space exploration involving several national space …
In the age of publicly funded space exploration involving several national space agencies, knowing about the highest mountain in the solar system is as basic to geospatial literacy as knowing about the highest mountain on Earth is to classical geography. This activity is a Google Earth grand tour of the terrestrial planets (Mercury, Venus, the Moon, and Mars) and guides students to explore atmospheres, magnetospheres, landscapes, and interiors. Each tour commences with an astronaut's overview from space, and then it zooms in on specific, media-rich placemarks, and ends with a concluding view from space. This is intended to help students develop a sense of relative position and relative size of features on other planets.
Through a teacher demonstration using water, heat and food coloring, students see …
Through a teacher demonstration using water, heat and food coloring, students see how convection moves the energy of the Sun from its core outwards. Students learn about the three different modes of heat transfer (convection, conduction, radiation) and how they are related to the Sun and life on our planet.
Telescopes make distant objects appear nearer, using a combination of lenses and …
Telescopes make distant objects appear nearer, using a combination of lenses and mirrors. If you happen to have no telescopes or binoculars at home, and you can make one yourself! Take note that the images may appear upside down.
Students use scaling from real-world data to obtain an idea of the …
Students use scaling from real-world data to obtain an idea of the immense size of Mars in relation to the Earth and the Moon, as well as the distances between them. Students calculate dimensions of the scaled versions of the planets, and then use balloons to represent their relative sizes and locations.
These interactive lecture slides cover topics in Solar System Astronomy, aligned with …
These interactive lecture slides cover topics in Solar System Astronomy, aligned with the OpenStax Astronomy textbook. Topics cover chapters 1-5, 6-13, and sections of 14 and 21 covering exoplanets. While aligned with topics in the textbook, slides are not a 1-to-1 mapping of the textbook and contain additional content, ideas, and discussion.
Opportunities for active engagement and interaction using peer instruction techniques (think-pair-share and discussion questions) are built into the slides. References to related activities and labs are also included. Slides are provided as Google Slides documents for easy adaptation. Each chapter has a complete version of the slides along with separated slides for different topics in the chapter.
This is one part of an astronomy resource collection by Lane Community College. This collection was built by Andrea Goering (goeringa@lanecc.edu) and Richard Wagner (wagnerr@lanecc.edu), instructors of physics and astronomy at Lane Community College in Eugene, Oregon, USA. Development of these resources was funded through LCC's OER Initiative (https://inside.lanecc.edu/oer). We'd love to hear about your use of these resources! Let us know what you're using, sign up for updates, and submit corrections, suggestions, or comments here: https://forms.gle/un49RUNs55GU3ZNF6
Find the full collection here: https://docs.google.com/spreadsheets/d/142FgVMDHZ7bu53gihe3kJ_-5PzsnuzfMklJ1ZLMFk2E/edit#gid=315930953
This course provides an introduction to the universe beyond the Earth. We …
This course provides an introduction to the universe beyond the Earth. We begin with a study of the night sky and the history of the science of astronomy. We then explore the various objects seen in the cosmos including the solar system, stars, galaxies, and the evolution of the universe itself. As an online course, it is equivalent to 6 lecture hours, and satisfies science requirements for the AA and AS degree. It is designed to be thorough enough to prepare you for more advanced work, while presenting the concepts to non-majors in a way that is meaningful and not overwhelming. We will consider the course a success if you have learned how to think about the universe critically in an organized, logical way, and to have enhanced your appreciation of the sky around us.
Introduction to Astronomy provides a quantitative introduction to the physics of the …
Introduction to Astronomy provides a quantitative introduction to the physics of the solar system, stars, the interstellar medium, the galaxy, and the universe, as determined from a variety of astronomical observations and models.
This text includes 25 reading assignments for an introductory astronomy course. They …
This text includes 25 reading assignments for an introductory astronomy course. They have been modified from the OpenStax Astronomy 2e and College Physics 2e (linked in related resources below) textbooks to order the topics in a logical manner for a one semester course and provide shortened (~10-20 pages) readings intended for biweekly reading assignments. The text also features enhanced treatment of the Newton's Laws, Energy, and Optics content that go beyond the typical introductory astronomy course for non-majors.
Course connections: This content was built for an introductory survey of astronomy course (e.g., PHYS 103), including apparent motions of objects in the sky, light, telescopes, solar system objects, exoplanets, the sun, stars, galaxies, and cosmology. Basic math skills (arithmetic, powers, scientific notation, unit conversions) will be used frequently. This course is designed for students in all majors.
No restrictions on your remixing, redistributing, or making derivative works. Give credit to the author, as required.
Your remixing, redistributing, or making derivatives works comes with some restrictions, including how it is shared.
Your redistributing comes with some restrictions. Do not remix or make derivative works.
Most restrictive license type. Prohibits most uses, sharing, and any changes.
Copyrighted materials, available under Fair Use and the TEACH Act for US-based educators, or other custom arrangements. Go to the resource provider to see their individual restrictions.