Updating search results...

Search Resources

1046 Results

View
Selected filters:
  • Engineering
  • Community College / Lower Division
Embedded Controllers Using C and Arduino Lab Manual, 2E
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This is the companion lab manual for the text "Embedded Controllers Using C and Arduino 2E". It introduces embedded controller systems using the Arduino hardware platform and the C programming language. It is intended for students in Electrical Engineering and Electrical Engineering Technology programs at the Associate and Baccalaureate levels. Clicking to view this item begins a .doc download.

Subject:
Applied Science
Engineering
Material Type:
Textbook
Provider:
Dissidents
Author:
James M. Fiore
Date Added:
08/31/2016
En-ROADS Guided Assignment
Unrestricted Use
CC BY
Rating
0.0 stars

The En-ROADS guided assignment challenges participants to use the free online En-ROADS simulator (https://en-roads.climateinteractive.org/) to create a scenario that successfully addresses climate change while considering implications across the economy, environment, and society. The En-ROADS assignment is used in classrooms, ranging from middle school to graduate level students, and comes in short and long forms. It can also be adapted as an exercise for non-academic settings. Often, the assignment is given following an En-ROADS workshop or Climate Action Simulation role-playing simulation game (https://www.climateinteractive.org/en-roads/).

Subject:
Applied Science
Ecology
Engineering
Environmental Science
Forestry and Agriculture
Life Science
Political Science
Social Science
Material Type:
Activity/Lab
Homework/Assignment
Unit of Study
Author:
Climate Interactive
Date Added:
07/05/2022
Energy 1: Types and Global Resources
Conditional Remix & Share Permitted
CC BY-NC
Rating
0.0 stars

This video defines energy, reviews a model of different types of energy and presents the four known stable global energy resources. This video is part of the Sustainability Learning Suites, made possible in part by a grant from the National Science Foundation. See 'Learn more about this resource' for Learning Objectives and Activities.

Subject:
Applied Science
Engineering
Environmental Science
Material Type:
Lecture Notes
Provider:
Cal Poly Materials Engineering
Provider Set:
Sustainability Learning Suites
Author:
Linda Vanasupa
Date Added:
11/07/2014
Energy 2: The Global Energy Picture: A Closer Look
Conditional Remix & Share Permitted
CC BY-NC
Rating
0.0 stars

This video takes an in-depth look at the annual energy available on earth against the amount of energy used by humans. It uses a graphic, published by Wes Hermann in the journal Energy, to makes clear the different energy fluxes. This video is part of the Sustainability Learning Suites, made possible in part by a grant from the National Science Foundation. See 'Learn more about this resource' for Learning Objectives and Activities.

Subject:
Applied Science
Engineering
Environmental Science
Material Type:
Lecture Notes
Provider:
Cal Poly Materials Engineering
Provider Set:
Sustainability Learning Suites
Author:
Linda Vanasupa
Date Added:
11/07/2014
Energy 3: Fossil Fuel Use and its Consequences - The Carbon Cycle
Conditional Remix & Share Permitted
CC BY-NC
Rating
0.0 stars

This video goes through the carbon cycle and describes how using fossil fuels threatens the foundation of the aquatic global food chain. This video is part of the Sustainability Learning Suites, made possible in part by a grant from the National Science Foundation. See 'Learn more about this resource' for Learning Objectives and Activities.

Subject:
Applied Science
Engineering
Environmental Science
Material Type:
Lecture Notes
Provider:
Cal Poly Materials Engineering
Provider Set:
Sustainability Learning Suites
Author:
Linda Vanasupa
Date Added:
11/07/2014
Energy 4: Fossil Fuels and the Greenhouse Gas Effect
Conditional Remix & Share Permitted
CC BY-NC
Rating
0.0 stars

This video describes in detail the greenhouse effect and how recovery from energy from fossile fuels results in green house gases. This video is part of the Sustainability Learning Suites, made possible in part by a grant from the National Science Foundation. See 'Learn more about this resource' for Learning Objectives and Activities.

Subject:
Applied Science
Engineering
Environmental Science
Material Type:
Lecture Notes
Provider:
Cal Poly Materials Engineering
Provider Set:
Sustainability Learning Suites
Author:
Linda Vanasupa
Date Added:
11/07/2014
Energy 5: Renewable and Non-Renewable Resources
Conditional Remix & Share Permitted
CC BY-NC
Rating
0.0 stars

This video distinguishes between renewable and non-renewable energy resources. It examines the question, "How long to do we have before we exhaust non-renewable resources?" It also looks at alternatives to non-renewable energy resources. This video is part of the Sustainability Learning Suites, made possible in part by a grant from the National Science Foundation. See 'Learn more about this resource' for Learning Objectives and Activities.

Subject:
Applied Science
Engineering
Environmental Science
Material Type:
Lecture Notes
Provider:
Cal Poly Materials Engineering
Provider Set:
Sustainability Learning Suites
Author:
Linda Vanasupa
Date Added:
11/07/2014
Energy Decisions, Markets, and Policies
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This course examines the choices and constraints regarding sources and uses of energy by households, firms, and governments through a number of frameworks to describe and explain behavior at various levels of aggregation. Examples include a wide range of countries, scope, settings, and analytical approaches. This course is one of many OCW Energy Courses, and it is a core subject in MIT’s underGraduate / Professional Energy Studies Minor. This Institute-wide program complements the deep expertise obtained in any major with a broad understanding of the interlinked realms of science, technology, and social sciences as they relate to energy and associated environmental challenges.

Subject:
Applied Science
Engineering
Environmental Science
Political Science
Social Science
Material Type:
Full Course
Date Added:
07/14/2022
Energy Economics
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This course explores the theoretical and empirical perspectives on individual and industrial demand for energy, energy supply, energy markets, and public policies affecting energy markets. It discusses aspects of the oil, natural gas, electricity, and nuclear power sectors and examines energy tax, price regulation, deregulation, energy efficiency and policies for controlling emission.

Subject:
Applied Science
Engineering
Environmental Science
Political Science
Social Science
Material Type:
Full Course
Date Added:
07/14/2022
Engineering Design and Rapid Prototyping
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This course provides students with an opportunity to conceive, design and implement a product, using rapid prototyping methods and computer-aid tools. The first of two phases challenges each student team to meet a set of design requirements and constraints for a structural component. A course of iteration, fabrication, and validation completes this manual design cycle. During the second phase, each team conducts design optimization using structural analysis software, with their phase one prototype as a baseline.
Acknowledgements
This course is made possible thanks to a grant by the alumni sponsored Teaching and Education Enhancement Program (Class of '51 Fund for Excellence in Education, Class of '55 Fund for Excellence in Teaching, Class of '72 Fund for Educational Innovation). The instructors gratefully acknowledge the financial support.
The course was approved by the Undergraduate Committee of the MIT Department of Aeronautics and Astronautics in 2003. The instructors thank Prof. Manuel Martinez-Sanchez and the committee members for their support and suggestions.

Subject:
Applied Science
Engineering
Mathematics
Material Type:
Full Course
Provider:
MIT
Provider Set:
MIT OpenCourseWare
Author:
Wallace, David
Young, Peter
de Weck, Olivier
Date Added:
01/01/2005
Engineering Design and Rapid Prototyping
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This course provides students with an opportunity to conceive, design and implement a product, using rapid prototyping methods and computer-aid tools. The first of two phases challenges each student team to meet a set of design requirements and constraints for a structural component. A course of iteration, fabrication, and validation completes this manual design cycle. During the second phase, each team conducts design optimization using structural analysis software, with their phase one prototype as a baseline.
Acknowledgements
This course is made possible thanks to a grant by the alumni sponsored Teaching and Education Enhancement Program (Class of '51 Fund for Excellence in Education, Class of '55 Fund for Excellence in Teaching, Class of '72 Fund for Educational Innovation). The instructors gratefully acknowledge the financial support. The course was approved by the Undergraduate Committee of the MIT Department of Aeronautics and Astronautics in 2003. The instructors thank Prof. Manuel Martinez-Sanchez and the committee members for their support and suggestions.

Subject:
Applied Science
Engineering
Mathematics
Material Type:
Full Course
Provider:
MIT
Provider Set:
MIT OpenCourseWare
Author:
de Weck, Olivier
Date Added:
01/01/2007
Engineering Dynamics
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This course is an introduction to the dynamics and vibrations of lumped-parameter models of mechanical systems. Topics covered include kinematics, force-momentum formulation for systems of particles and rigid bodies in planar motion, work-energy concepts, virtual displacements and virtual work. Students will also become familiar with the following topics: Lagrange's equations for systems of particles and rigid bodies in planar motion, and linearization of equations of motion. After this course, students will be able to evaluate free and forced vibration of linear multi-degree of freedom models of mechanical systems and matrix eigenvalue problems.

Subject:
Applied Science
Engineering
Physical Science
Physics
Material Type:
Full Course
Provider:
MIT
Provider Set:
MIT OpenCourseWare
Author:
Gossard, David
Vandiver, J.
Date Added:
09/01/2011
Engineering Economics
Unrestricted Use
CC BY
Rating
0.0 stars

A Canadian Text

Word Count: 68423

(Note: This resource's metadata has been created automatically by reformatting and/or combining the information that the author initially provided as part of a bulk import process.)

Subject:
Applied Science
Economics
Engineering
Social Science
Material Type:
Textbook
Provider:
University of Saskatchewan
Date Added:
01/26/2024
Engineering: Electrical Fundamentals Syllabus
Unrestricted Use
CC BY
Rating
0.0 stars

Engineering: Electrical Fundamentals Syllabus

Engineering 202: Electrical Fundamentals II

Course Description: Topics covered in this course include: AC and 2nd order transient analysis,
sinusoids and phasors, sinusoidal steady-state analysis, nodal analysis, branch analysis, source
transformations, Thevenin's and Norton's equivalent circuits, sinusoidal steady-state power calculation,
and balanced three-phase circuits.

Course Outcomes
Upon successful completion of this course, students will be able to:
1. Be able to apply Kirchoff's Laws to successfully analyze an AC circuit with both independent and
dependent sources. Be able to check your results for self-consistency.
2. Be able to apply Node-Voltage and Mesh-Current techniques to successfully analyze an AC
circuit with both independent and dependent sources. Op amp and equivalent circuits are a
natural extension of this understanding.
3. Be able to use appropriate tools to describe power use in an AC circuit and distinguish between
real and reactive power.
4. Be able to determine line and phase currents and voltages for any balanced configuration of 3
phase power.
5. Be able to predict the frequency dependent behavior of simple filter through the use of Bode
plots. Demonstrate an understanding of the implications of the Bode plot for the actual behavior
of the circuit

Subject:
Applied Science
Engineering
Material Type:
Syllabus
Author:
Benjamen N. Taber
Date Added:
03/15/2021
Engineering Innovation and Design
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

Learn to produce great designs, be a more effective engineer, and communicate with high emotional and intellectual impact. This project based course gives students the ability to understand, contextualize, and analyze engineering designs and systems. By learning and applying design thinking, students will more effectively solve problems in any domain. Lectures focus on teaching a tested, iterative design process as well as techniques to sharpen creative analysis. Guest lectures from all disciplines illustrate different approaches to design thinking. This course develops students' skills to conceive, organize, lead, implement, and evaluate successful projects in any engineering discipline. Additionally, students learn how to give compelling in-person presentations. Open to all majors, all years.

Subject:
Applied Science
Business and Communication
Engineering
Material Type:
Full Course
Provider:
MIT
Provider Set:
MIT OpenCourseWare
Author:
Kotelly, Blade
Schindall, Joel
Date Added:
09/01/2012
Engineering MAE 130A: Intro to Fluid Mechanics (English)
Conditional Remix & Share Permitted
CC BY-SA
Rating
0.0 stars

This course covers: Fundamental concepts; fluid statics; fluid dynamics; Bernoulli's equation; control-volume analysis; basic flow equations of conservation of mass, momentum, and energy; differential analysis; potential flow; viscous incompressible flow.

Subject:
Applied Science
Engineering
Material Type:
Full Course
Author:
Roger Rangel
Date Added:
01/15/2019
Engineering Math: Differential Equations and Linear Algebra
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This course is about the mathematics that is most widely used in the mechanical engineering core subjects: An introduction to linear algebra and ordinary differential equations (ODEs), including general numerical approaches to solving systems of equations.

Subject:
Algebra
Applied Science
Engineering
Mathematics
Material Type:
Full Course
Provider:
MIT
Provider Set:
MIT OpenCourseWare
Author:
Frey, Daniel
Strang, Gilbert
Date Added:
09/01/2014
Engineering Measurements and Instrumentation: First Edition
Only Sharing Permitted
CC BY-ND
Rating
0.0 stars

This e-book is intended to be used as a complementary resource for engineering measurements and instrumentation courses, at a junior engineering level.
If you have any comments or suggestions, please reach out to the author via email: reza@iastate.edu

Subject:
Applied Science
Engineering
Material Type:
Textbook
Provider:
Iowa State University
Author:
Reza Montazami
Date Added:
03/17/2020
Engineering Mechanics I
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This subject provides an introduction to the mechanics of materials and structures. You will be introduced to and become familiar with all relevant physical properties and fundamental laws governing the behavior of materials and structures and you will learn how to solve a variety of problems of interest to civil and environmental engineers. While there will be a chance for you to put your mathematical skills obtained in 18.01, 18.02, and eventually 18.03 to use in this subject, the emphasis is on the physical understanding of why a material or structure behaves the way it does in the engineering design of materials and structures.

Subject:
Applied Science
Engineering
Material Type:
Full Course
Provider:
MIT
Provider Set:
MIT OpenCourseWare
Author:
Buehler, Markus
Ulm, Franz-Josef
Date Added:
09/01/2007
Engineering Mechanics II
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This subject provides an introduction to fluid mechanics. Students are introduced to and become familiar with all relevant physical properties and fundamental laws governing the behavior of fluids and learn how to solve a variety of problems of interest to civil and environmental engineers. While there is a chance to put skills from calculus and differential equations to use in this subject, the emphasis is on physical understanding of why a fluid behaves the way it does. The aim is to make the students think as a fluid. In addition to relating a working knowledge of fluid mechanics, the subject prepares students for higher-level subjects in fluid dynamics.

Subject:
Applied Science
Engineering
Material Type:
Full Course
Provider:
MIT
Provider Set:
MIT OpenCourseWare
Author:
Gonzalez-Rodriguez, David
Madsen, Ole
Date Added:
02/01/2006