Updating search results...

Search Resources

4335 Results

View
Selected filters:
  • geoscience
Borehole Logging from Sample Collection to Borehole Geophysics
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

In January of 2003, CSUF drilled and completed a deep multiport-monitoring well on the north side of campus. This was done in order to gain a better understanding of the local subsurface geology and groundwater conditions in and around CSUF. Samples were collected from the drill hole (boring) every 5-feet. The total depth of the well is 870 feet below ground surface (grade). Borehole geophysical data (E-log) information was collected from the boring prior to the installation of the well pipe. As you describe the soil samples, compare and contrast your findings to those of the geophysical signature (gamma-ray log) found in the accompanying "E-log" for the boring.

(Note: this resource was added to OER Commons as part of a batch upload of over 2,200 records. If you notice an issue with the quality of the metadata, please let us know by using the 'report' button and we will flag it for consideration.)

Subject:
Biology
Hydrology
Life Science
Physical Science
Material Type:
Activity/Lab
Provider:
Science Education Resource Center (SERC) at Carleton College
Provider Set:
Teach the Earth
Author:
Richard Laton
Date Added:
08/27/2019
Borehole analysis using stereographic projection
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

Preparation requires lecture and/or reading material on stereonet methods in plotting small circles, and on making stereonet rotations along small circles. In lab, students are given a description of the problem, along with a schematic cross section on the blackboard showing how the dip of the eastern fold limb is not constrained, but how the orientation of cross beds in an unoriented core are the only data available to help constrain the dip of the fold limb. Students are then given a while (~20 minutes) to think about and discuss how a solution can be made. An open class discussion follows, and then I guide the students through the answer. An alternative method is to let the students take a week to think about and solve the problem with little or no help.

(Note: this resource was added to OER Commons as part of a batch upload of over 2,200 records. If you notice an issue with the quality of the metadata, please let us know by using the 'report' button and we will flag it for consideration.)

Subject:
Biology
Life Science
Mathematics
Measurement and Data
Material Type:
Activity/Lab
Provider:
Science Education Resource Center (SERC) at Carleton College
Provider Set:
Teach the Earth
Author:
Eric Nelson
Date Added:
09/07/2020
BotEC: Depth of Buried Metamorphic Rock
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

Question In many high-grade metamorphic belts around the world, rocks were buried 20-30 km beneath the surface during deformation and metamorphism. How deep is that relative to the cruising altitude of a typical commercial airplane flying across the country?

(Note: this resource was added to OER Commons as part of a batch upload of over 2,200 records. If you notice an issue with the quality of the metadata, please let us know by using the 'report' button and we will flag it for consideration.)

Subject:
Biology
Geoscience
Life Science
Mathematics
Measurement and Data
Physical Science
Statistics and Probability
Material Type:
Activity/Lab
Provider:
Science Education Resource Center (SERC) at Carleton College
Provider Set:
Teach the Earth
Author:
Barb Tewksbury
Date Added:
09/22/2022
BotEC: Eruption Rates
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

Question
Over the last 70 million years or so, the Hawaiian Hot Spot has been pumping out lava, a total of about 775,000 km3 worth. As the Pacific Plate has moved over the hot spot, the volcanic peaks and plateaus of the Hawaiian-Emperor seamount chain have formed. If all of that lava had erupted in California, how deeply would California be buried in lava?

(Note: this resource was added to OER Commons as part of a batch upload of over 2,200 records. If you notice an issue with the quality of the metadata, please let us know by using the 'report' button and we will flag it for consideration.)

Subject:
Biology
Geoscience
Life Science
Mathematics
Measurement and Data
Physical Science
Statistics and Probability
Material Type:
Activity/Lab
Provider:
Science Education Resource Center (SERC) at Carleton College
Provider Set:
Teach the Earth
Author:
Barb Tewksbury
Date Added:
11/15/2019
BotEC: Percentage of Copper in Ore
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

Question Suppose that you are building a new house. It will take about 90 kg (198 pounds) of copper to do the electrical wiring. In order to get the copper in the first place, someone needs to mine solid rock that contains copper, extract the copper minerals, throw away the waste rock, and smelt the copper minerals to produce copper metal. Rocks mined for copper typically contain only very small percentages of copper -- about 0.7% in the case of most of the big porphyry copper deposits of the world. How much rock would someone have to mine in order to extract enough copper to wire your new house?

(Note: this resource was added to OER Commons as part of a batch upload of over 2,200 records. If you notice an issue with the quality of the metadata, please let us know by using the 'report' button and we will flag it for consideration.)

Subject:
Biology
Career and Technical Education
Environmental Studies
Geology
Geoscience
Life Science
Mathematics
Measurement and Data
Physical Science
Statistics and Probability
Material Type:
Activity/Lab
Provider:
Science Education Resource Center (SERC) at Carleton College
Provider Set:
Teach the Earth
Author:
Barb Tewksbury
Date Added:
09/22/2022
BotEC: Rate of Lava Flow
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

Question In 1983, an eruption began at Kilauea Volcano in Hawaii that has proved to be the largest and longest-lived eruption since records began in 1823. Lava has poured out of the volcano at an average rate of about 160 million m3 per year. To put those flow rates into perspective, let's suppose that the volcano was erupting directly into your classroom. At these flow rates, how long would it take to fill your classroom with lava?

(Note: this resource was added to OER Commons as part of a batch upload of over 2,200 records. If you notice an issue with the quality of the metadata, please let us know by using the 'report' button and we will flag it for consideration.)

Subject:
Biology
Geoscience
Life Science
Mathematics
Measurement and Data
Physical Science
Statistics and Probability
Material Type:
Activity/Lab
Provider:
Science Education Resource Center (SERC) at Carleton College
Provider Set:
Teach the Earth
Author:
Barb Tewksbury
Date Added:
09/22/2022
BotEC: Weight of Gold
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

Question Let's suppose that you have a shoe box full of water (the box is waterproof, of course). The shoe box weighs about 9 kg (19.8 pounds). Suppose you emptied the box and filled it completely with rock (little or no air space). How much would it weigh? Let's empty the box again and fill it completely with pure gold. How much would the box weigh now?

(Note: this resource was added to OER Commons as part of a batch upload of over 2,200 records. If you notice an issue with the quality of the metadata, please let us know by using the 'report' button and we will flag it for consideration.)

Subject:
Biology
Geoscience
Life Science
Mathematics
Measurement and Data
Physical Science
Physics
Statistics and Probability
Material Type:
Activity/Lab
Provider:
Science Education Resource Center (SERC) at Carleton College
Provider Set:
Teach the Earth
Author:
Barb Tewksbury
Date Added:
09/22/2022
A Botanist at Large
Read the Fine Print
Rating
0.0 stars

This online article, from the museum's Musings newsletter for educators, profiles two scientists who lead walking tours in New York City's green spaces. Bill Schiller, a botany lecturer and senior museum instructor, discusses the ways in which he "builds an appreciation of how nature works and a sense of responsible stewardship" during his tours. Bob DeCandido, an urban park ranger, explains how he "teaches city-dwellers to look closely at their wild neighbors and become better environmental stewards in the process." The article also includes ideas for four activities that can be completed during a walking tour.

Subject:
Botany
Ecology
Forestry and Agriculture
Geoscience
Life Science
Physical Science
Material Type:
Data Set
Provider:
American Museum of Natural History
Provider Set:
American Museum of Natural History
Author:
Bob DeCandido, Ph.D.
William Schiller
Date Added:
10/15/2014
Bottled Versus Tap Water: What You Drink and Why
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

In the activity students learn about the properties of solutions, acidity and pH, electrolytes versus non-electrolytes, and solution concentration. Hopefully, this activity will also dispel common misconceptions about tap water and bottled beverages.

(Note: this resource was added to OER Commons as part of a batch upload of over 2,200 records. If you notice an issue with the quality of the metadata, please let us know by using the 'report' button and we will flag it for consideration.)

Subject:
Agriculture
Career and Technical Education
Chemistry
Environmental Studies
Physical Science
Material Type:
Activity/Lab
Provider:
Science Education Resource Center (SERC) at Carleton College
Provider Set:
Teach the Earth
Author:
Marie Villarba, Seattle Central Community College
Date Added:
04/16/2021
Boulder ID
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

After some in and out of class practice with mineral and rock id, students are divided into groups of about 5 and taken to locations where boulders and cobbles are used as decorative landscaping (usually adjacent to streets or on short slopes). This seems to work best if class sizes are about 25 or less - then instructors can keep track of groups in an area. Groups are given an area about 5 feet wide and 25 long (enough for several hundred cobbles/boulders) and told to identify 6-12 rocks of different types (at least 2 each if only doing Ig, Met, Sed.- more if rock names expected). 1.) In the first stage groups are given a fairly long time (~20-25 minutes) to pick and identify rocks with flags and markers. This seems like a long time and normally they can quickly flag and name the easiest rocks in their area. However, they only get one point for each rock correctly identified at this stage. 2.) In the second stage groups get 10 minutes to inspect all other groups' areas and mark those rocks they think other groups INCORRECTLY identified. They are allowed to send one person from their group to inspect each of the other groups' areas. Their group gets 5 pts for each correctly mis-identified rock of another group. 3.) In the third stage, groups can defend their identifications to the instructor/TA and get 10 points if they prove that another group flagged/id'd one of their identifications incorrectly - the mistaken group gets docked 10 points. The key to this exercise is that in the first stage some of the students should realize that they get many more points for making other groups mis-identify their rocks, and that all of their own group members should be trained to have enough expertise to identify tricky or difficult rocks. This is the reason for the excess time at the first stage, for training, review, and typically the group will change their chosen rocks to include the most difficult ones rather than the easiest. Should groups not realize this - the instructor might want to prompt them.Students are allowed Rock charts, cheat sheets, etc. at the instructors decision.

(Note: this resource was added to OER Commons as part of a batch upload of over 2,200 records. If you notice an issue with the quality of the metadata, please let us know by using the 'report' button and we will flag it for consideration.)

Subject:
Biology
Life Science
Material Type:
Activity/Lab
Provider:
Science Education Resource Center (SERC) at Carleton College
Provider Set:
Teach the Earth
Author:
Steve Hurst
Date Added:
08/14/2019
The Boxing Day Tsunami
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

empty

(Note: this resource was added to OER Commons as part of a batch upload of over 2,200 records. If you notice an issue with the quality of the metadata, please let us know by using the 'report' button and we will flag it for consideration.)

Subject:
Biology
Life Science
Oceanography
Physical Science
Material Type:
Activity/Lab
Provider:
Science Education Resource Center (SERC) at Carleton College
Provider Set:
Teach the Earth
Author:
Glenn Richard
Date Added:
07/08/2022
The Boy Scout at the Bottom of the World
Conditional Remix & Share Permitted
CC BY-SA
Rating
0.0 stars

This article profiles Paul Siple, a Boy Scout selected to accompany Admiral Byrd to Antarctica in 1928.

Subject:
History
U.S. History
Material Type:
Reading
Provider:
Ohio State University College of Education and Human Ecology
Provider Set:
Beyond Penguins and Polar Bears: An Online Magazine for K-5 Teachers
Author:
Rachel Hintz
Date Added:
10/17/2014
Brachiopod exercise for FossilPlot
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

Students are taught how to use FossilPlot software in the lab prior to this exercise. Students work individual to work through the short exercise, handing in a copy of the diversity graphs for the brachiopod orders (which will be tested in the following midterm) and a completed worksheet. The exercise reinforces the main functions of FossilPlot and addresses basic concepts on diversity and biostratigraphy. Once the assignments are collected and graded, we discuss the outcomes of the exercise in class.

(Note: this resource was added to OER Commons as part of a batch upload of over 2,200 records. If you notice an issue with the quality of the metadata, please let us know by using the 'report' button and we will flag it for consideration.)

Subject:
Biology
Life Science
Material Type:
Activity/Lab
Provider:
Science Education Resource Center (SERC) at Carleton College
Provider Set:
Teach the Earth
Author:
Leif Tapanila
Date Added:
11/20/2021
Bubbles in Magmas
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

SSAC Physical Volcanology module. Students build a spreadsheet and apply the ideal gas law to model the velocity of a bubble rising in a viscous magma.

Subject:
Geoscience
Mathematics
Physical Science
Physics
Material Type:
Activity/Lab
Provider:
Science Education Resource Center (SERC) at Carleton College
Provider Set:
Pedagogy in Action
Author:
Chuck Connor
Date Added:
11/06/2014
Bubbles in Magmas
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

SSAC Physical Volcanology module. Students build a spreadsheet and apply the ideal gas law to model the velocity of a bubble rising in a viscous magma.

(Note: this resource was added to OER Commons as part of a batch upload of over 2,200 records. If you notice an issue with the quality of the metadata, please let us know by using the 'report' button and we will flag it for consideration.)

Subject:
Biology
Life Science
Mathematics
Measurement and Data
Physical Science
Physics
Statistics and Probability
Material Type:
Activity/Lab
Provider:
Science Education Resource Center (SERC) at Carleton College
Provider Set:
Teach the Earth
Author:
Module by Chuck Connor, University of South Florida, Tampa. This cover page by Ali Furmall, USF, now at U. Oregon.
Date Added:
08/25/2020
Buckets of Fun with Argument-Driven Inquiry in Your School Library!
Conditional Remix & Share Permitted
CC BY-SA
Rating
0.0 stars

A new instructional model, called Argument-Driven Inquiry (ADI), is introduced to elementary teachers in this article. The author shows how school librarians and classroom teachers can collaborate to help students construct and communicate evidence, or arguments. Evidence buckets, a collaborative activity, and related online resources are presented. The article appears in the free online magazine Beyond Weather and the Water Cycle, which is structured around the seven essential principles of climate literacy.

Subject:
Arts and Humanities
Education
English Language Arts
Geoscience
Mathematics
Physical Science
Reading Informational Text
Space Science
Material Type:
Activity/Lab
Lesson Plan
Teaching/Learning Strategy
Provider:
Ohio State University College of Education and Human Ecology
Provider Set:
Beyond Weather and the Water Cycle
Author:
Marcia Mardis
National Science Foundation
Date Added:
05/30/2012
A Bug's Life: Under A Rock!
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This activity is a biology lab investigation where students create habitats to observe decomposers in a controlled setting.

Subject:
Biology
Life Science
Material Type:
Activity/Lab
Provider:
Science Education Resource Center (SERC) at Carleton College
Provider Set:
Pedagogy in Action
Author:
Joan McKinnon
Date Added:
08/16/2012
Build It Yourself: Satellite!
Read the Fine Print
Some Rights Reserved
Rating
0.0 stars

"Build It Yourself: Satellite!" is an online Flash game hosted on the James Webb Space Telescope website. The goal of the game is to explain the decision-making process of satellite design. The user can choose to build a "small," "medium," or "large" astronomy satellite. The user then selects science goals, wavelength, instruments, and optics. The satellite is then launched on the appropriate rocket (shown via an animation). Finally, the user is shown what their satellite might look like, as well as what kind of data it might collect, via examples from similar real-life satellites. Satellites range from small X-ray missions without optics (like the Rossi X-ray Timing Explorer) to large missions with segmented mirrors (like the James Webb Space Telescope).

Subject:
Applied Science
Engineering
Geoscience
Physical Science
Physics
Space Science
Technology
Material Type:
Activity/Lab
Game
Provider:
NASA
Provider Set:
NASA Wavelength
Date Added:
11/05/2014
Build Your Own Earth
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

Build Your Own Earth is a freely available web site to explore the factors that affect Earth's climate. Climate model simulations reveal the annual distributions of 50 different quantities. An accompanying homework for undergraduates is included that could be adapted for other students.

(Note: this resource was added to OER Commons as part of a batch upload of over 2,200 records. If you notice an issue with the quality of the metadata, please let us know by using the 'report' button and we will flag it for consideration.)

Subject:
Applied Science
Biology
Environmental Science
Life Science
Material Type:
Activity/Lab
Provider:
Science Education Resource Center (SERC) at Carleton College
Provider Set:
Teach the Earth
Author:
David Schultz
Date Added:
07/09/2021