Updating search results...

Search Resources

411 Results

View
Selected filters:
  • design
Splash, Pop, Fizz: Rube Goldberg Machines
Read the Fine Print
Educational Use
Rating
0.0 stars

Refreshed with an understanding of the six simple machines; screw, wedge, pully, incline plane, wheel and axle, and lever, student groups receive materials and an allotted amount of time to act as mechanical engineers to design and create machines that can complete specified tasks. For the competition, they choose from pre-determined goal options such as: 1) dumping goldfish into a bowl, 2) popping a balloon, or 3) dropping mint candies into soda pop (creating a fizzy reaction). Students demonstrate their functioning contraptions to the class, earning points for using all six simple machines, successful transitions from one chain reaction to the next, and completion of the end goal.

Subject:
Applied Science
Engineering
Physical Science
Physics
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Jackie Swanson
Date Added:
09/18/2014
Spool Racer Design & Competition
Read the Fine Print
Educational Use
Rating
0.0 stars

Students see how potential energy (stored energy) can be converted into kinetic energy (motion). Acting as if they were engineers designing vehicles, they use rubber bands, pencils and spools to explore how elastic potential energy from twisted rubber bands can roll the spools. They brainstorm, prototype, modify, test and redesign variations to the basic spool racer design in order to meet different design criteria, ultimately facing off in a race competition. These simple-to-make devices store potential energy in twisted rubber bands and then convert the potential energy to kinetic energy upon release.

Subject:
Applied Science
Engineering
Physical Science
Physics
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Eric Anderson
Irene Zhao
Jeff Kessler
Date Added:
10/14/2015
Stack It Up!
Read the Fine Print
Educational Use
Rating
0.0 stars

Students analyze and begin to design a pyramid. Working in engineering teams, they perform calculations to determine the area of the pyramid base, stone block volumes, and the number of blocks required for their pyramid base. They make a scaled drawing of the pyramid using graph paper.

Subject:
Applied Science
Architecture and Design
Engineering
Material Type:
Activity/Lab
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Denise Carlson
Glen Sirakavit
Gregory Ramsey
Jacquelyn Sullivan
Lawrence E. Carlson
Malinda Schaefer Zarske
Date Added:
09/26/2008
Sticks and Stones Will Break That Bone!
Read the Fine Print
Educational Use
Rating
0.0 stars

Students learn about the strength of bones and methods of helping to mend fractured bones. During a class demonstration, a chicken bone is broken by applying a load until it reaches a point of failure (fracture). Then, working as biomedical engineers, students teams design their own splint or cast to help repair a fractured bone, learning about the strength of materials used.

Subject:
Applied Science
Engineering
Health, Medicine and Nursing
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Denise W. Carlson
Jaime Morales
Malinda Schaefer Zarske
Date Added:
10/14/2015
Straw Bridges
Read the Fine Print
Educational Use
Rating
0.0 stars

Working as engineering teams, students design and create model beam bridges using plastic drinking straws and tape as their construction materials. Their goal is to build the strongest bridge with a truss pattern of their own design, while meeting the design criteria and constraints. They experiment with different geometric shapes and determine how shapes affect the strength of materials. Let the competition begin!

Subject:
Applied Science
Architecture and Design
Engineering
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Chris Valenti
Denali Lander
Denise W. Carlson
Joe Friedrichsen
Jonathan S. Goode
Malinda Schaefer Zarske
Natalie Mach
Date Added:
10/14/2015
Straw Towers to the Moon
Read the Fine Print
Educational Use
Rating
0.0 stars

Students learn about civil engineers and work through each step of the engineering design process in two mini-activities that prepare them for a culminating challenge to design and build the tallest straw tower possible, given limited time and resources. First they examine the profiles of the tallest 20 towers in the world. Then in the first mini-activity (one-straw tall tower), student pairs each design a way to keep one straw upright with the least amount of tape and fewest additional straws. In the second mini-activity (no "fishing pole"), the pairs determine the most number of straws possible to construct a vertical straw tower before it bends at 45 degrees—resembling a fishing pole shape. Students learn that the taller a structure, the more tendency it has to topple over. In the culminating challenge (tallest straw tower), student pairs apply what they have learned and follow the steps of the engineering design process to create the tallest possible model tower within time, material and building constraints, mirroring the real-world engineering experience of designing solutions within constraints. Three worksheets are provided, for each of two levels, grades K-2 and grades 3-5. The activity scales up to school-wide, district or regional competition scale.

Subject:
Career and Technical Education
Mathematics
Measurement and Data
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Tiffany Tu
Date Added:
02/17/2017
Streams in the City
Unrestricted Use
Public Domain
Rating
0.0 stars

These exercises are designed to guide a student to an understanding of how rainfall and storm events result in runoff over the surface of the earth. Runoff is influenced by the nature of the surface of the earth. Streamflow is particularly influenced by urbanization-the paving over of permeable surfaces with impermeable ones. In light of this, students are encouraged to think about design elements that incorporate more permeable surfaces into their own environments, including their school parking lots and neighborhoods.

Subject:
Applied Science
Environmental Science
Material Type:
Activity/Lab
Provider:
U.S. Environmental Protection Agency
Date Added:
02/16/2011
Sum It Up: An Introduction to Static Equilibrium
Read the Fine Print
Educational Use
Rating
0.0 stars

Students are introduced to static equilibrium by learning how forces and torques are balanced in a well-designed engineering structure. A tower crane is presented as a simplified two-dimensional case. Using Popsicle sticks and hot glue, student teams design, build and test a simple tower crane model according to these principles, ending with a team competition.

Subject:
Applied Science
Architecture and Design
Engineering
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Alison Pienciak
Nicholas Hanson
Stefan Berkower
Date Added:
09/18/2014
Sumobot Challenge
Read the Fine Print
Educational Use
Rating
0.0 stars

Students apply their knowledge of constructing and programming LEGO MINDSTORMS (TM)NXT robots to create sumobots - strong robots capable of pushing other robots out of a ring. To meet the challenge, groups follow the steps of the engineering design process and consider robot structure, weight and gear ratios in their designs to make their robots push as hard as possible to force robot opponents out of the ring. A class competition serves as the final test to determine the best designed robot, illustrating the interrelationships between designing, building and programming. This activity gives students the opportunity to be creative as well as have fun applying and combining what they have learned through the previous activities and lessons in this and prior units in the series. A PowerPoint (tm) presentation, pre/post quizzes and a worksheet are provided.

Subject:
Applied Science
Engineering
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Pranit Samarth
Sachin Nair
Satish S. Nair
Date Added:
09/18/2014
Sun Curve Design Challenge Activity
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

A design challenge activity that explores renewable energy, sustainable farming, and design thinking to create new solutions for growing food in school communities.

Material Type:
Activity/Lab
Date Added:
06/06/2013
Sustainable Development for Engineers
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

By independent study of the book Sustainable Development for Engineers (K.F. Mulder, 2006) students acquire basic knowledge about sustainable development

Subject:
Applied Science
Engineering
Material Type:
Lecture Notes
Provider:
Delft University of Technology
Provider Set:
TU Delft OpenCourseWare
Author:
L. M. Kamp
Date Added:
02/26/2016
Swinging with Style
Read the Fine Print
Educational Use
Rating
0.0 stars

Students experientially learn about the characteristics of a simple physics phenomenon the pendulum by riding on playground swings. They use pendulum terms and a timer to experiment with swing variables. They extend their knowledge by following the steps of the engineering design process to design timekeeping devices powered by human swinging.

Subject:
Applied Science
Engineering
Physical Science
Physics
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Ashleigh Bailey
Denise W. Carlson
Malinda S. Zarske
Megan Podlogar
Date Added:
10/14/2015
Swiss Alps Emergency Sled Design
Read the Fine Print
Educational Use
Rating
0.0 stars

Students act as engineers to solve a hypothetical problem that has occurred in the Swiss Alps due to a seismic event. In research groups, students follow the steps of the engineering design process as teams compete to design and create small-size model sleds that can transport materials to people in distress who are living in the affected town. The sleds need to be able to carry various resources that the citizens need for survival as well as meet other design requirements. Students test their designs and make redesigns to improve their prototypes in order to achieve final working designs. Once the designs and final testing are complete, students create final technical reports.

Subject:
Applied Science
Engineering
Physical Science
Physics
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
Activities
Author:
Cynthia Dickman
Emma Cipriani
Shane Sullivan
Date Added:
11/13/2018
Syllabus Infographic PowerPoint Templates
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

The Cambrian College Teaching & Learning Innovation Hub has created a series of syllabus templates designed as infographics.

These templates have been created in PowerPoint to assist educators in developing and customizing a more visual introduction to their course. These illustrative templates are simple so that your students can have an easy-to-digest and engaging overview of your course. The syllabus is often the first piece of information that students will receive in their course. They often refer to this to help them become oriented with the course activities and assessments; it’s an important element to their success.

Visit our website to download the templates individually by hovering over the previews and clicking the “Download Template” button to receive the single PowerPoint file. To receive all of the templates as a ZIP file package, click the “Download All Templates” button.

For help in customizing the templates in PowerPoint, we have also included a short how-to video.

These templates by Cambrian College are licensed under CC-BY-NC-SA 4.0.

Subject:
Education
Material Type:
Assessment
Diagram/Illustration
Lesson
Lesson Plan
Reading
Student Guide
Syllabus
Teaching/Learning Strategy
Provider:
Cambrian College
Author:
Cambrian College
Date Added:
08/23/2019
System Architecture
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This course covers principles and methods for technical System Architecture. It presents a synthetic view including: the resolution of ambiguity to identify system goals and boundaries; the creative process of mapping form to function; and the analysis of complexity and methods of decomposition and re-integration. Industrial speakers and faculty present examples from various industries. Heuristic and formal methods are presented. Restricted to SDM (System Design and Management) students.

Subject:
Applied Science
Engineering
Material Type:
Full Course
Provider:
MIT
Provider Set:
MIT OpenCourseWare
Author:
Crawley, Edward
Date Added:
01/01/2007
System Design and Analysis based on AD and Complexity Theories
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This course studies what makes a good design and how one develops a good design. Students consider how the design of engineered systems (such as hardware, software, materials, and manufacturing systems) differ from the “design” of natural systems such as biological systems; discuss complexity and how one makes use of complexity theory to improve design; and discover how one uses axiomatic design theory (AD theory) in design of many different kinds of engineered systems. Questions are analyzed using Axiomatic Design Theory and Complexity Theory. Case studies are presented including the design of machines, tribological systems, materials, manufacturing systems, and recent inventions. Implications of AD and complexity theories on biological systems discussed.

Subject:
Applied Science
Computer Science
Engineering
Material Type:
Full Course
Provider:
MIT
Provider Set:
MIT OpenCourseWare
Author:
Lee, Taesik
Suh, Nam
Date Added:
02/01/2005
T-Shirt Launcher
Read the Fine Print
Educational Use
Rating
0.0 stars

Students are challenged to find a way to get school t-shirts up into the stands during sporting events. They work with a real client (if possible, such as a cheerleading squad, booster club or band) to determine the requirements and constraints that would make the project a success, including a budget constraint. They think “outside of the box” to come up with lots of ideas. Then they mock-up small-scale model(s) of their best, most feasible ideas for testing, before making full-scale usable devices that they further refine and then demonstrate and deliver to the client.

Subject:
Mathematics
Material Type:
Activity/Lab
Provider:
TeachEngineering
Date Added:
02/07/2017
Take Off with Paper Airplanes
Read the Fine Print
Educational Use
Rating
0.0 stars

This lesson introduces students to the art of designing an airplane through paper airplane constructions. The goal is that students will learn important aircraft design considerations and how engineers must iterate their designs to achieve success. Students first follow several basic paper airplane models, after which they will then design their own paper airplane. They will also learn how engineers make models to test ideas and designs.

Subject:
Applied Science
Engineering
Material Type:
Activity/Lab
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Alex Conner
Geoffrey Hill
Janet Yowell
Malinda Schaefer Zarske
Tom Rutkowski
Date Added:
09/18/2014
Tallest Tower Teamwork Activity, with LEGO Bricks
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

A classic teamwork activity. Small teams build towers out of LEGO bricks -- with some caveats or rule variations to challenge their teamwork &/or creativity.

Subject:
Business and Communication
Career and Technical Education
Education
Social Science
Material Type:
Activity/Lab
Date Added:
10/22/2015