Updating search results...

Search Resources

65 Results

View
Selected filters:
  • NGSS.HS.ETS1.1 - Analyze a major global challenge to specify qualitative and quantitati...
Quantifying Refraction
Read the Fine Print
Educational Use
Rating
0.0 stars

Students learn the relevant equations for refraction (index of refraction, Snell's law) and how to use them to predict the behavior of light waves in specified scenarios. After a brief review of the concept of refraction (as learned in the previous lesson), the equations along with their units and variable definitions, are introduced. Student groups work through a few example conceptual and mathematical problems and receive feedback on their work. Then students conduct the associated activity during which they practice using the equations in a problem set, examine data from a porous film like those used in biosensors, and apply the equations they learned to a hypothetical scenario involving biosensors.

Subject:
Applied Science
Engineering
Physical Science
Physics
Material Type:
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Caleb Swartz
Date Added:
09/18/2014
Renewable Energy Design: Wind Turbines
Read the Fine Print
Educational Use
Rating
0.0 stars

Students are introduced to renewable energy, including its relevance and importance to our current and future world. They learn the mechanics of how wind turbines convert wind energy into electrical energy and the concepts of lift and drag. Then they apply real-world technical tools and techniques to design their own aerodynamic wind turbines that efficiently harvest the most wind energy. Specifically, teams each design a wind turbine propeller attachment. They sketch rotor blade ideas, create CAD drawings (using Google SketchUp) of the best designs and make them come to life by fabricating them on a 3D printer. They attach, test and analyze different versions and/or configurations using a LEGO wind turbine, fan and an energy meter. At activity end, students discuss their results and the most successful designs, the aerodynamics characteristics affecting a wind turbine's ability to efficiently harvest wind energy, and ideas for improvement. The activity is suitable for a class/team competition. Example 3D rotor blade designs are provided.

Subject:
Career and Technical Education
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
AMPS
Gisselle Cunningham
Lindrick Outerbridge
Russell Holstein
Date Added:
02/17/2017
Rising Tides: Protect Your Home from the Waves
Read the Fine Print
Educational Use
Rating
0.0 stars

Warming oceans and melting landlocked ice caused by global climate change may result in rising sea levels. This rise in sea level combined with increased intensity and frequency of storms will produce storm surges that flood subways, highways, homes, and more. In this activity, visitors design and test adaptations to prepare for flooding caused by sea level rise.

Subject:
Applied Science
Atmospheric Science
Career and Technical Education
Environmental Science
Environmental Studies
Oceanography
Physical Science
Material Type:
Activity/Lab
Provider:
CLEAN: Climate Literacy and Energy Awareness Network
Provider Set:
CLEAN: Climate Literacy and Energy Awareness Network
Author:
Kate Carter
National Center for Science Education
Date Added:
06/29/2021
See the Genes
Read the Fine Print
Educational Use
Rating
0.0 stars

Through this concluding lesson and its associated activity, students experience one valuable and often overlooked skill of successful scientists and engineers communicating your work and ideas. They explore the importance of scientific communication, including the basic, essential elements of communicating new information to the public and pitfalls to avoid. In the associated activity, student groups create posters depicting their solutions to the unit's challenge question accurate, efficient methods for detecting cancer-causing genes using optical biosensors which includes providing a specific example with relevant equations. Students are also individually assessed on their understanding of refraction via a short quiz. This lesson and its associated activity conclude the unit and serve as the culminating Go Public phase of the Legacy Cycle, providing unit review and summative assessment.

Subject:
Applied Science
Business and Communication
Communication
Engineering
Material Type:
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Caleb Swartz
Date Added:
09/18/2014
Should I Drink That?
Read the Fine Print
Educational Use
Rating
0.0 stars

Students perform one of the first steps that environmental engineers do to determine water quality sampling and analysis. Student teams measure the electrical conductivity of four water samples (deionized water, purified water, school tap water and a salt-water solution) using teacher-made LED-conductivity testers and commercially available electrical conductivity meters. They use multimeters to also measure the resistance of the samples. They graph their collected data to see the relationship between the conductivity and resistance. Then, all students measure the conductivity of tap water samples brought to school from their homes; they organize and average their data by sub areas within their local school district to see if house location has any relationship to the water conductivity in their community.

Subject:
Applied Science
Career and Technical Education
Electronic Technology
Engineering
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Marjorie Hernandez
Date Added:
09/18/2014
Show Me the Genes
Read the Fine Print
Educational Use
Rating
0.0 stars

By this point in the unit, students have learned all the necessary information and conceptualized a design for how an optical biosensor could be used to detect a target strand of DNA associated with a cancer-causing gene as their solution to the unit's challenge question. Now student groups act as engineers again, using a poster format to communicate and prove the validity of the design. Successful posters include a description of refraction, explanations of refraction in a thin film, and the factors that can alter the interference pattern of a thin film. The posters culminate with an explanation of what is expected to be seen in a biosensing device of this type if it were coupled to a target molecule, proven with a specific example and illustrated with drawings and diagrams throughout. All the poster elements combine to prove the accuracy and viability of this method of gene detection. Together with its associated lesson, this activity functions as part of the summative assessment for this unit.

Subject:
Applied Science
Engineering
Genetics
Life Science
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Caleb Swartz
Date Added:
09/18/2014
Skin and the Effects of Ultraviolet Radiation
Read the Fine Print
Educational Use
Rating
0.0 stars

Towards finding a solution to the unit's Grand Challenge Question about using nanoparticles to detect, treat and protect against skin cancer, students continue the research phase in order to answer the next research questions: What is the structure and function of skin? How does UV radiation affect the chemical reactions that go on within the skin? After seeing an ultraviolet-sensitive bead change color and learning how they work, students learn about skin anatomy and the effects of ultraviolet radiation on human skin, pollution's damaging effect on the ozone layer that can lead to increases in skin cancer, the UV index, types of skin cancer, ABCDEs of mole and lesion evaluation, and the sun protection factor (SPF) rating system for sunscreens. This prepares students to conduct the associated activity, in which they design quality-control experiments to test SPF substances.

Subject:
Applied Science
Engineering
Health, Medicine and Nursing
Material Type:
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Amber Spolarich
Michelle Bell
Date Added:
10/14/2015
Statistical Analysis of Flexible Circuits
Read the Fine Print
Educational Use
Rating
0.0 stars

Students are introduced to the technology of flexible circuits, some applications and the photolithography fabrication process. They are challenged to determine if the fabrication process results in a change in the circuit dimensions since, as circuits get smaller and smaller (nano-circuits), this could become very problematic. The lesson prepares students to conduct the associated activity in which they perform statistical analysis (using Excel® and GeoGebra) to determine if the circuit dimension sizes before and after fabrication are in fact statistically different. A PowerPoint® presentation and post-quiz are provided. This lesson and its associated activity are suitable for use during the last six weeks of the AP Statistics course; see the topics and timing note for details.

Subject:
Mathematics
Statistics and Probability
Material Type:
Lesson
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Cunjiang Yu
Miguel R. Ramirez
Minwei Xu
Song Chen
Date Added:
02/17/2017
Steps in Preparing E-Content Package
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

E-Content Package is very useful to all the learners. Herewith, I have uploaded Power Point Presentation with regard to the preparation of E-Content Package which is highly useful for the stakeholders.

Subject:
Educational Technology
Material Type:
Lesson Plan
Author:
SUBRAMANIAN P
Date Added:
08/29/2019
The Sust
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

The sustainability learning suites is a set of learning objects created for people with a post-secondary science background, organized in six themes: Systems thinking; Sustainable development; Population; Energy; Water and Materials. The materials are designed on Fink's Taxonomy of Significant Learning and include: learning objectives, editable slides with notes and embedded classroom activities, activities of 1-3 hours, assessments, and a set of 24 videos.

Material Type:
Activity/Lab
Assessment
Full Course
Lecture
Lecture Notes
Date Added:
04/22/2015
Systems Are Everywhere
Conditional Remix & Share Permitted
CC BY-NC
Rating
0.0 stars

The “Systems Are Everywhere” module was originally written for high school science teachers or counselors to use in any setting (in class or in extracurricular programs). However, during field-testing, we found that many elementary and middle school teachers were able to use these lessons successfully with their students. The module is made up of three lessons that serve to foster students’ understanding of systems, systems models, and systems thinking at every level of learning and across many content areas. Blended throughout the lessons are career connections that will introduce students to diverse systems thinkers in STEM, and provide context for how systems approaches are used in real life to address complex problems. The lessons and module can be used as a stand-alone set of activities or can be integrated into any course as an extension or enrichment.

The module begins with students modeling a complex system. Students will brainstorm and sketch the parts and connections of the system, then use an online tool (Loopy) to model the interactions of those parts and connections. Next, students will develop their understanding of systems thinking skills and their application for addressing problems and solutions. Then, students will apply their knowledge and skills to model a system of their choosing. Lastly, they will showcase their skills by creating a student profile and integrating their systems thinking skills into a resume.

Target Audience
This is our introductory module that we recommend teaching before each of our other modules to give students a background in systems and to help them understand the many careers available in STEM. This module can be applied easily to any content area and works best as written for students between 6th and 12th grades but can be adapted for other ages. It works very well when teaching virtually and in-person. If you are looking for an introduction to systems that can be delivered in-person with more kinesthetic activities, please see our Introduction to Systems module. The Intro to Systems module works best with 8-12 grade students, though can be used with some modifications for 6-7th graders. This Systems are Everywhere module can work well for elementary through secondary grades.

Subject:
Life Science
Material Type:
Activity/Lab
Assessment
Homework/Assignment
Lesson
Lesson Plan
Module
Student Guide
Teaching/Learning Strategy
Unit of Study
Author:
Abigail Randall
Baliga Lab
Barbara Steffens
Claudia Ludwig
Eric Muhs
Institute for Systems Biology
Jennifer Eklund
Linnea Stavney
Michael Walker
Rachel Calder
Rebecca A. Howsmon
Stephanie Swegle
Systems Education Experiences
Yuna Shin
Date Added:
01/24/2023
Tell Me Doc: Will I Get Cancer?
Read the Fine Print
Educational Use
Rating
0.0 stars

Students are introduced to the unit challenge discovering a new way to assess a person's risk of breast cancer. Solving this challenge requires knowledge of refraction and the properties of light. After being introduced to the challenge question, students generate ideas related to solving the challenge, and then read a short online article on optical biosensors that guides their research towards solving the problem.

Subject:
Applied Science
Engineering
Health, Medicine and Nursing
Material Type:
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Caleb Swartz
Date Added:
09/18/2014
Tell Me the Odds (of Cancer)
Read the Fine Print
Educational Use
Rating
0.0 stars

Through four lessons and three hands-on activities, students learn the concepts of refraction and interference in order to solve an engineering challenge: "In 2013, actress Angelina Jolie underwent a double mastectomy, not because she had been diagnosed with breast cancer, but merely to lower her cancer risk. But what if she never inherited the gene(s) that are linked to breast cancer and endured surgery unnecessarily? Can we create a new method of assessing people's genetic risks of breast cancer that is both efficient and cost-effective?" While pursuing a solution to this challenge, students learn about some high-tech materials and delve into the properties of light, including the equations of refraction (index of refraction, Snell's law). Students ultimately propose a method to detect cancer-causing genes by applying the refraction of light in a porous film in the form of an optical biosensor. Investigating this challenge question through this unit is designed for an honors or AP level physics class, although it could be modified for conceptual physics.

Subject:
Applied Science
Engineering
Health, Medicine and Nursing
Material Type:
Full Course
Unit of Study
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Caleb Swartz
Date Added:
09/18/2014
Testing the Future of Water
Read the Fine Print
Educational Use
Rating
0.0 stars

The increasing scarcity of drinking water has captured the world’s attention and driven scientists and conservationists to find solutions. This ten-minute video and accompanying lesson has students examine how the country of Namibia has tapped an unlikely source of water to combat shortages and experiment with water filtration materials and strategies.

This lesson is not under an open license; however it is provided free for educational services.

Subject:
Applied Science
Environmental Science
Life Science
Social Science
Material Type:
Activity/Lab
Lesson
Lesson Plan
Author:
RetroReport
Date Added:
05/01/2023
Tippy Tap Plus Piping
Read the Fine Print
Educational Use
Rating
0.0 stars

The Tippy Tap hand-washing station is an inexpensive and effective device used extensively in the developing world. One shortcoming of the homemade device is that it must be manually refilled with water and therefore is of limited use in high-traffic areas. In this activity, student teams design, prototype and test piping systems to transport water from a storage tank to an existing Tippy Tap hand-washing station, thereby creating a more efficient hand-washing station. Through this example service-learning engineering project, students learn basic fluid dynamic principles that are needed for creating efficient piping systems.

Subject:
Applied Science
Engineering
Hydrology
Physical Science
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Benjamin S. Terry
Denise W. Carlson
Kaisa Wallace-Moyer
Stephanie Rivale
Date Added:
09/18/2014
Unit Honey Bee- Module 1-3
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

Students will examine ways declining bee population can impact day to day life, by considering how the cost of honey and pollination has been affected society Students will create real-world problems that relate to statistics on the declining bee population.

Subject:
English Language Arts
Mathematics
Material Type:
Unit of Study
Date Added:
05/09/2021
Using Nanoparticles to Detect, Treat and Protect against Skin Cancer
Read the Fine Print
Educational Use
Rating
0.0 stars

This unit on nanoparticles engages students with a hypothetical Grand Challenge Question that asks about the skin cancer risk for someone living in Australia, given the local UV index and the condition of the region's ozone layer. The question asks how nanoparticles might be used to help detect, treat and protect people from skin cancer. Through three lessons, students learn about the science of electromagnetic radiation and energy waves, human skin and its response to ultraviolet radiation, and the state of medical nanotechnology related to skin cancer. Through three hands-on activities, students perform flame tests to become familiar with the transfer of energy in quantum form, design and conduct their own quality-control experiments to test sun protection factors (SPFs), and write nanotechnology grant proposals.

Subject:
Applied Science
Engineering
Health, Medicine and Nursing
Material Type:
Full Course
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Amber Spolarich
Michelle Bell
Date Added:
10/14/2015
Using Stress and Strain to Detect Cancer!
Read the Fine Print
Educational Use
Rating
0.0 stars

Students are presented with a biomedical engineering challenge: Breast cancer is the second-leading cause of cancer-related death among women and the American Cancer Society says mammography is the best early-detection tool available. Despite this, many women choose not to have them; of all American women at or over age 40, only 54.9% have had a mammogram within the past year. One reason women skip annual mammograms is pain, with 90% reporting discomfort. Is there a way to detect the presence of tumors that is not as painful as mammography but more reliable and quantifiable than breast self-exams or clinical breast exams? This three lesson/three activity unit is designed for first-year accelerated or AP physics classes. It provide hands-on activities to teach the concepts of stress, strain and Hooke's law, which students apply to solve the challenge problem.

Subject:
Applied Science
Engineering
Health, Medicine and Nursing
Material Type:
Full Course
Unit of Study
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Luke Diamond
Date Added:
09/18/2014
Watershed Balance
Read the Fine Print
Educational Use
Rating
0.0 stars

Students learn about the water cycle and its key components. First, they learn about the concept of a watershed and why it is important in the context of engineering hydrology. Then they learn how we can use the theory of conservation of mass to estimate the amount of water that enters a watershed (precipitation, groundwater flowing in) and exits a watershed (evaporation, runoff, groundwater out). Finally, students learn about runoff and how we visualize runoff in the form of hydrographs.

Subject:
Applied Science
Engineering
Hydrology
Physical Science
Material Type:
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Emily Gill
Malinda Schaefer Zarske
Date Added:
09/18/2014