Updating search results...

Search Resources

57 Results

View
Selected filters:
  • WY.SCI.MS.PS3.5 - Construct, use, and present arguments to support the claim that when t...
  • WY.SCI.MS.PS3.5 - Construct, use, and present arguments to support the claim that when t...
Ramp and Review
Read the Fine Print
Educational Use
Rating
0.0 stars

In this hands-on activity rolling a ball down an incline and having it collide into a cup the concepts of mechanical energy, work and power, momentum, and friction are all demonstrated. During the activity, students take measurements and use equations that describe these energy of motion concepts to calculate unknown variables, and review the relationships between these concepts.

Subject:
Applied Science
Engineering
Physical Science
Physics
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Chris Yakacki
Denise W. Carlson
Malinda Schaefer Zarske
Date Added:
10/14/2015
A River Ran Through It
Read the Fine Print
Educational Use
Rating
0.0 stars

Students learn how water is used to generate electricity. They investigate water's potential-to-kinetic energy transformation in hands-on activities about falling water and waterwheels. During the activities, they take measurements, calculate averages and graph results. Students also learn the history of the waterwheel and how engineers use water turbines in hydroelectric power plants today. They discover the advantages and disadvantages of hydroelectric power. In a literacy activity, students learn and write about an innovative new hydro-electrical power generation technology.

Subject:
Applied Science
Career and Technical Education
Electronic Technology
Engineering
Material Type:
Activity/Lab
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Denise W. Carlson
Malinda Schaefer Zarske
Natalie Mach
Sabre Duren
Xochitl Zamora-Thompson
Date Added:
09/18/2014
Runaway Train: Investigating Speed with Photo Gates
Read the Fine Print
Educational Use
Rating
0.0 stars

Students conduct an experiment to determine the relationship between the speed of a wooden toy car at the bottom of an incline and the height at which it is released. They observe how the photogate-based speedometer instrument "clocks" the average speed of an object (the train). They gather data and create graphs plotting the measured speed against start height. After the experiment, as an optional extension activity, students design brakes to moderate the speed of the cart at the bottom of the hill to within a specified speed range.

Subject:
Applied Science
Engineering
Mathematics
Measurement and Data
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Andrew Cave
Date Added:
09/18/2014
The Science of Knapping
Unrestricted Use
CC BY
Rating
0.0 stars

Explore the physics and material science of making stone tools. Educator Nate Salzman walks us through the surprisingly complex science of flintknapping, or the process of turning stone into blades, arrowheads, spear points, axes, jewelry and more. Making tools from stone may be thousands of years old, but required people to think about the properties of the material they were using and the physics of striking the stone to shape it just right.

Consider using this resource to support classroom learning about the relationship between microscopic and macroscopic properties and how forces are transmitted. Animations derived from this video have been published separately as "Animations - The Science of Knapping."

This resource is part of Jefferson Patterson Park and Museum’s open educational resources project to provide history, ecology, archaeology, and conservation resources related to our 560 acre public park. More of our content can be found on YouTube and SketchFab. JPPM is a part of the Maryland Historical Trust under the Maryland Department of Planning.

Subject:
Ancient History
Applied Science
Arts and Humanities
Geology
History
Physical Science
Physics
World Cultures
Material Type:
Module
Provider:
Jefferson Patterson Park and Museum
Author:
JPPM Admin
Date Added:
06/07/2022
Six Minutes of Terror
Read the Fine Print
Educational Use
Rating
0.0 stars

This lesson discusses how each component of a spacecraft is specifically designed so that a rover can land safely in six minutes. Also, students will learn how common, everyday materials and technology, like nylon, polyester and airbags, are used in space-age technology.

Subject:
Applied Science
Engineering
Material Type:
Activity/Lab
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Chris Yakacki
Daria Kotys-Schwartz
Geoffrey Hill
Janet Yowell
Malinda Schaefer Zarske
Date Added:
09/18/2014
Smithsonian Science Starter: An Egg-cellent Return to Earth
Conditional Remix & Share Permitted
CC BY-NC
Rating
0.0 stars

Investigate why and how spacecraft must dissipate energy when landing back on Earth, or on Mars, or anywhere else for that matter.

Subject:
Applied Science
Engineering
Physical Science
Material Type:
Lesson Plan
Provider:
National Air and Space Museum
Author:
National Air and Space Museum
Date Added:
09/02/2022
Smithsonian Science Starter: Why Landing on Earth Is Like a Series of Car Crashes - ISS Science
Conditional Remix & Share Permitted
CC BY-NC
Rating
0.0 stars

Astronaut Randy Bresnik talks about the landing. Also see how the energy from a landing is dissipated in a hands-on classroom activity.

Subject:
Applied Science
Engineering
Physical Science
Material Type:
Activity/Lab
Provider:
National Air and Space Museum
Author:
National Air and Space Museum
Date Added:
09/02/2022
Spool Racer Design & Competition
Read the Fine Print
Educational Use
Rating
0.0 stars

Students see how potential energy (stored energy) can be converted into kinetic energy (motion). Acting as if they were engineers designing vehicles, they use rubber bands, pencils and spools to explore how elastic potential energy from twisted rubber bands can roll the spools. They brainstorm, prototype, modify, test and redesign variations to the basic spool racer design in order to meet different design criteria, ultimately facing off in a race competition. These simple-to-make devices store potential energy in twisted rubber bands and then convert the potential energy to kinetic energy upon release.

Subject:
Applied Science
Engineering
Physical Science
Physics
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Eric Anderson
Irene Zhao
Jeff Kessler
Date Added:
10/14/2015
Swinging Pendulum
Read the Fine Print
Educational Use
Rating
0.0 stars

This activity demonstrates how potential energy (PE) can be converted to kinetic energy (KE) and back again. Given a pendulum height, students calculate and predict how fast the pendulum will swing by understanding conservation of energy and using the equations for PE and KE. The equations are justified as students experimentally measure the speed of the pendulum and compare theory with reality.

Subject:
Applied Science
Engineering
Physical Science
Physics
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Chris Yakacki
Denise Carlson
Malinda Schaefer Zarske
Date Added:
10/14/2015
Using Heat from the Sun
Read the Fine Print
Educational Use
Rating
0.0 stars

In this lesson, students will first discuss where energy comes from, including sources such as fossil fuels, nuclear, and such renewable technologies as solar. After this initial exploration, students will investigate the three main types of heat transfer: convection, conduction, and radiation. Students will learn how properties describe the ways different materials behave, for instance whether they are insulators or conductors. Students will complete a crossword puzzle to reinforce their vocabulary in this content area. The class will then focus on the acquisition and storage of energy through the design, construction, and testing of a fully functional solar oven.

Subject:
Applied Science
Engineering
Environmental Science
Material Type:
Activity/Lab
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Lauren Powell
Date Added:
09/18/2014
What Is a Motor? How Does a Rotation Sensor Work?
Read the Fine Print
Educational Use
Rating
0.0 stars

Students learn about electric motors and rotational sensors. They learn that motors convert electrical energy to mechanical energy and typically include rotational sensors to enable distance measuring. They also learn the basics about gear trains and gear ratios. Students create a basic program using the LEGO MINDSTORMS(TM) NXT interface to control a motor to move a small robot. Then, through a 10-minute mini-activity, they make measurements and observations to test a LEGO rotation sensor's ability to measure distance in rotations. This prepares them for the associated activity during which they calculate how many wheel rotations are needed to travel a distance. A PowerPoint® presentation, worksheet and pre/post quizzes are provided.

Subject:
Applied Science
Career and Technical Education
Electronic Technology
Engineering
Material Type:
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Nishant Sinha
Pranit Samarth
Satish S. Nair
Date Added:
09/18/2014
What a Drag!
Read the Fine Print
Educational Use
Rating
0.0 stars

The purpose of this activity is to demonstrate how drag affects falling objects. Students will make a variety of shapes out of paper and see how size and shape affects the speed with which their paper shapes fall.

Subject:
Applied Science
Engineering
Physical Science
Physics
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Bailey Jones
Chris Yakacki
Denise Carlson
Malinda Schaefer Zarske
Matt Lundberg
Date Added:
09/18/2014
What a Drag! Lesson
Read the Fine Print
Educational Use
Rating
0.0 stars

Students learn about friction and drag two different forces that convert energy of motion to heat. Both forces can act on a moving object and decrease its velocity. Students learn examples of friction and drag, and suggest ways to reduce the impact of these forces. The equation that governs common frictional forces is introduced, and during a hands-on activity, students experimentally measure a coefficient of friction.

Subject:
Applied Science
Engineering
Physical Science
Physics
Material Type:
Activity/Lab
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Alex Conner
Geoffrey Hill
Janet Yowell
Malinda Schaefer Zarske
Tom Rutkowski
Date Added:
09/18/2014
Work and Power: Waterwheel
Read the Fine Print
Educational Use
Rating
0.0 stars

Investigating a waterwheel illustrates to students the physical properties of energy. They learn that the concept of work, force acting over a distance, differs from power, which is defined as force acting over a distance over some period of time. Students create a model waterwheel and use it to calculate the amount of power produced and work done.

Subject:
Applied Science
Engineering
Physical Science
Physics
Material Type:
Activity/Lab
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Bailey Jones
Chris Yakacki
Denise W. Carlson
Malinda Schaefer Zarske
Matt Lundberg
Date Added:
09/18/2014